Blame view
src/nnet2bin/nnet-am-average.cc
9.14 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
// nnet2bin/nnet-am-average.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <algorithm> #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/combine-nnet-a.h" #include "nnet2/am-nnet.h" namespace kaldi { void GetWeights(const std::string &weights_str, int32 num_inputs, std::vector<BaseFloat> *weights) { KALDI_ASSERT(num_inputs >= 1); if (!weights_str.empty()) { SplitStringToFloats(weights_str, ":", true, weights); if (weights->size() != num_inputs) { KALDI_ERR << "--weights option must be a colon-separated list " << "with " << num_inputs << " elements, got: " << weights_str; } } else { for (int32 i = 0; i < num_inputs; i++) weights->push_back(1.0 / num_inputs); } // normalize the weights to sum to one. float weight_sum = 0.0; for (int32 i = 0; i < num_inputs; i++) weight_sum += (*weights)[i]; for (int32 i = 0; i < num_inputs; i++) (*weights)[i] = (*weights)[i] / weight_sum; if (fabs(weight_sum - 1.0) > 0.01) { KALDI_WARN << "Normalizing weights to sum to one, sum was " << weight_sum; } } std::vector<bool> GetSkipLayers(const std::string &skip_layers_str, const int32 first_layer_idx, const int32 last_layer_idx) { std::vector<bool> skip_layers(last_layer_idx, false); if (skip_layers_str.empty()) { return skip_layers; } std::vector<int> layer_indices; bool ret = SplitStringToIntegers(skip_layers_str, ":", true, &layer_indices); if (!ret) { KALDI_ERR << "Cannot parse the skip layers specifier. It should be" << "colon-separated list of integers"; } int min_elem = std::numeric_limits<int>().max(), max_elem = std::numeric_limits<int>().min(); std::vector<int>::iterator it; for ( it = layer_indices.begin(); it != layer_indices.end(); ++it ) { if ( *it < 0 ) *it = last_layer_idx + *it; // convert the negative indices to // correct indices -- -1 would be the // last one, -2 the one before the last // and so on. if (*it > max_elem) max_elem = *it; if (*it < min_elem) min_elem = *it; } if (max_elem >= last_layer_idx) { KALDI_ERR << "--skip-layers option has to be a colon-separated list" << "of indices which are supposed to be skipped. " << "Maximum expected index: " << last_layer_idx << " got: " << max_elem ; } if (min_elem < first_layer_idx) { KALDI_ERR << "--skip-layers option has to be a colon-separated list" << "of indices which are supposed to be skipped. " << "Minimum expected index: " << first_layer_idx << " got: " << min_elem ; } for ( it = layer_indices.begin(); it != layer_indices.end(); ++it ) { skip_layers[*it] = true; } return skip_layers; } } int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "This program averages (or sums, if --sum=true) the parameters over a " "number of neural nets. If you supply the option --skip-last-layer=true, " "the parameters of the last updatable layer are copied from <model1> instead " "of being averaged (useful in multi-language scenarios). " "The --weights option can be used to weight each model differently. " " " "Usage: nnet-am-average [options] <model1> <model2> ... <modelN> <model-out> " " " "e.g.: " " nnet-am-average 1.1.nnet 1.2.nnet 1.3.nnet 2.nnet "; bool binary_write = true; bool sum = false; ParseOptions po(usage); po.Register("sum", &sum, "If true, sums instead of averages."); po.Register("binary", &binary_write, "Write output in binary mode"); string weights_str; bool skip_last_layer = false; string skip_layers_str; po.Register("weights", &weights_str, "Colon-separated list of weights, one " "for each input model. These will be normalized to sum to one."); po.Register("skip-last-layer", &skip_last_layer, "If true, averaging of " "the last updatable layer is skipped (result comes from model1)"); po.Register("skip-layers", &skip_layers_str, "Colon-separated list of " "indices of the layers that should be skipped during averaging." "Be careful: this parameter uses an absolute indexing of " "layers, i.e. iterates over all components, not over updatable " "ones only."); po.Read(argc, argv); if (po.NumArgs() < 2) { po.PrintUsage(); exit(1); } std::string nnet1_rxfilename = po.GetArg(1), nnet_wxfilename = po.GetArg(po.NumArgs()); TransitionModel trans_model1; AmNnet am_nnet1; { bool binary_read; Input ki(nnet1_rxfilename, &binary_read); trans_model1.Read(ki.Stream(), binary_read); am_nnet1.Read(ki.Stream(), binary_read); } int32 num_inputs = po.NumArgs() - 1; std::vector<BaseFloat> model_weights; GetWeights(weights_str, num_inputs, &model_weights); int32 c_begin = 0, c_end = (skip_last_layer ? am_nnet1.GetNnet().LastUpdatableComponent() : am_nnet1.GetNnet().NumComponents()); KALDI_ASSERT(c_end != -1 && "Network has no updatable components."); int32 last_layer_idx = am_nnet1.GetNnet().NumComponents(); std::vector<bool> skip_layers = GetSkipLayers(skip_layers_str, 0, last_layer_idx); // scale the components - except the last layer, if skip_last_layer == true. for (int32 c = c_begin; c < c_end; c++) { if (skip_layers[c]) { KALDI_VLOG(2) << "Not averaging layer " << c << " (as requested)"; continue; } bool updated = false; UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(&(am_nnet1.GetNnet().GetComponent(c))); if (uc != NULL) { KALDI_VLOG(2) << "Averaging layer " << c << " (UpdatableComponent)"; uc->Scale(model_weights[0]); updated = true; } NonlinearComponent *nc = dynamic_cast<NonlinearComponent*>(&(am_nnet1.GetNnet().GetComponent(c))); if (nc != NULL) { KALDI_VLOG(2) << "Averaging layer " << c << " (NonlinearComponent)"; nc->Scale(model_weights[0]); updated = true; } if (! updated) { KALDI_VLOG(2) << "Not averaging layer " << c << " (unscalable component)"; } } for (int32 i = 2; i <= num_inputs; i++) { bool binary_read; Input ki(po.GetArg(i), &binary_read); TransitionModel trans_model; trans_model.Read(ki.Stream(), binary_read); AmNnet am_nnet; am_nnet.Read(ki.Stream(), binary_read); for (int32 c = c_begin; c < c_end; c++) { if (skip_layers[c]) continue; UpdatableComponent *uc_average = dynamic_cast<UpdatableComponent*>(&(am_nnet1.GetNnet().GetComponent(c))); const UpdatableComponent *uc_this = dynamic_cast<const UpdatableComponent*>(&(am_nnet.GetNnet().GetComponent(c))); if (uc_average != NULL) { KALDI_ASSERT(uc_this != NULL && "Networks must have the same structure."); uc_average->Add(model_weights[i-1], *uc_this); } NonlinearComponent *nc_average = dynamic_cast<NonlinearComponent*>(&(am_nnet1.GetNnet().GetComponent(c))); const NonlinearComponent *nc_this = dynamic_cast<const NonlinearComponent*>(&(am_nnet.GetNnet().GetComponent(c))); if (nc_average != NULL) { KALDI_ASSERT(nc_this != NULL && "Networks must have the same structure."); nc_average->Add(model_weights[i-1], *nc_this); } } } { Output ko(nnet_wxfilename, binary_write); trans_model1.Write(ko.Stream(), binary_write); am_nnet1.Write(ko.Stream(), binary_write); } KALDI_LOG << "Averaged parameters of " << num_inputs << " neural nets, and wrote to " << nnet_wxfilename; return 0; // it will throw an exception if there are any problems. } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |