Blame view
src/nnet2bin/nnet-get-egs-discriminative.cc
5.17 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
// nnet2bin/nnet-get-egs-discriminative.cc // Copyright 2012-2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/nnet-example-functions.h" #include "nnet2/am-nnet.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Get examples of data for discriminative neural network training; " "each one corresponds to part of a file, of variable (and configurable) " "length. " " " "Usage: nnet-get-egs-discriminative [options] <model> " "<features-rspecifier> <ali-rspecifier> <den-lat-rspecifier> " "<training-examples-out> " " " "An example [where $feats expands to the actual features]: " "nnet-get-egs-discriminative --acoustic-scale=0.1 \\ " " 1.mdl '$feats' 'ark,s,cs:gunzip -c ali.1.gz|' 'ark,s,cs:gunzip -c lat.1.gz|' ark:1.degs "; SplitDiscriminativeExampleConfig split_config; ParseOptions po(usage); split_config.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 5) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1), feature_rspecifier = po.GetArg(2), ali_rspecifier = po.GetArg(3), clat_rspecifier = po.GetArg(4), examples_wspecifier = po.GetArg(5); TransitionModel trans_model; AmNnet am_nnet; { bool binary; Input ki(nnet_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } int32 left_context = am_nnet.GetNnet().LeftContext(), right_context = am_nnet.GetNnet().RightContext(); // Read in all the training files. SequentialBaseFloatMatrixReader feat_reader(feature_rspecifier); RandomAccessInt32VectorReader ali_reader(ali_rspecifier); RandomAccessCompactLatticeReader clat_reader(clat_rspecifier); DiscriminativeNnetExampleWriter example_writer(examples_wspecifier); int32 num_done = 0, num_err = 0; int64 examples_count = 0; // used in generating id's. SplitExampleStats stats; // diagnostic. for (; !feat_reader.Done(); feat_reader.Next()) { std::string key = feat_reader.Key(); const Matrix<BaseFloat> &feats = feat_reader.Value(); if (!ali_reader.HasKey(key)) { KALDI_WARN << "No pdf-level posterior for key " << key; num_err++; continue; } const std::vector<int32> &alignment = ali_reader.Value(key); if (!clat_reader.HasKey(key)) { KALDI_WARN << "No denominator lattice for key " << key; num_err++; continue; } CompactLattice clat = clat_reader.Value(key); CreateSuperFinal(&clat); // make sure only one state has a final-prob (of One()). if (clat.Properties(fst::kTopSorted, true) == 0) { TopSort(&clat); } BaseFloat weight = 1.0; DiscriminativeNnetExample eg; if (!LatticeToDiscriminativeExample(alignment, feats, clat, weight, left_context, right_context, &eg)) { KALDI_WARN << "Error converting lattice to example."; num_err++; continue; } std::vector<DiscriminativeNnetExample> egs; SplitDiscriminativeExample(split_config, trans_model, eg, &egs, &stats); KALDI_VLOG(2) << "Split lattice " << key << " into " << egs.size() << " pieces."; for (size_t i = 0; i < egs.size(); i++) { // Note: excised_egs will be of size 0 or 1. std::vector<DiscriminativeNnetExample> excised_egs; ExciseDiscriminativeExample(split_config, trans_model, egs[i], &excised_egs, &stats); for (size_t j = 0; j < excised_egs.size(); j++) { std::ostringstream os; os << (examples_count++); std::string example_key = os.str(); example_writer.Write(example_key, excised_egs[j]); } } num_done++; } if (num_done > 0) stats.Print(); KALDI_LOG << "Finished generating examples, " << "successfully processed " << num_done << " feature files, " << num_err << " had errors."; return (num_done == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |