Blame view
src/nnet2bin/nnet-get-feature-transform.cc
3.07 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
// nnet2bin/nnet-get-feature-transform.cc // Copyright 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet2/get-feature-transform.h" int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; try { const char *usage = "Get feature-projection transform using stats obtained with acc-lda. " "See comments in the code of nnet2/get-feature-transform.h for more " "information. " " " "Usage: nnet-get-feature-transform [options] <matrix-out> <lda-acc-1> <lda-acc-2> ... "; bool binary = true; FeatureTransformEstimateOptions opts; std::string write_cholesky; std::string write_within_covar; ParseOptions po(usage); po.Register("binary", &binary, "Write outputs in binary mode."); po.Register("write-cholesky", &write_cholesky, "If supplied, write to this " "wxfilename the Cholesky factor of the within-class covariance. " "Can be used for perturbing features. E.g. " "--write-cholesky=exp/nnet5/cholesky.tpmat"); po.Register("write-within-covar", &write_within_covar, "If supplied, write " "to this wxfilename the within-class covariance (as a symmetric " "matrix). E.g. --write-within-covar=exp/nnet5/within_covar.mat"); opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() < 2) { po.PrintUsage(); exit(1); } FeatureTransformEstimate fte; std::string projection_wxfilename = po.GetArg(1); for (int32 i = 2; i <= po.NumArgs(); i++) { bool binary_in, add = true; Input ki(po.GetArg(i), &binary_in); fte.Read(ki.Stream(), binary_in, add); } Matrix<BaseFloat> mat; TpMatrix<BaseFloat> cholesky; fte.Estimate(opts, &mat, (write_cholesky != "" || write_within_covar != "" ? &cholesky : NULL)); WriteKaldiObject(mat, projection_wxfilename, binary); if (write_cholesky != "") { WriteKaldiObject(cholesky, write_cholesky, binary); } if (write_within_covar != "") { SpMatrix<BaseFloat> within_var(cholesky.NumRows()); within_var.AddTp2(1.0, cholesky, kNoTrans, 0.0); WriteKaldiObject(within_var, write_within_covar, binary); } return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |