Blame view

src/nnet2bin/nnet-get-feature-transform.cc 3.07 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
  // nnet2bin/nnet-get-feature-transform.cc
  
  // Copyright 2013  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "nnet2/get-feature-transform.h"
  
  int main(int argc, char *argv[]) {
    using namespace kaldi;
    typedef kaldi::int32 int32;
    try {
      const char *usage =
          "Get feature-projection transform using stats obtained with acc-lda.
  "
          "See comments in the code of nnet2/get-feature-transform.h for more
  "
          "information.
  "
          "
  "
          "Usage:  nnet-get-feature-transform [options] <matrix-out> <lda-acc-1> <lda-acc-2> ...
  ";
  
      bool binary = true;
      FeatureTransformEstimateOptions opts;
      std::string write_cholesky;
      std::string write_within_covar;
      ParseOptions po(usage);
      po.Register("binary", &binary, "Write outputs in binary mode.");
      po.Register("write-cholesky", &write_cholesky, "If supplied, write to this "
                  "wxfilename the Cholesky factor of the within-class covariance. "
                  "Can be used for perturbing features.  E.g. "
                  "--write-cholesky=exp/nnet5/cholesky.tpmat");
      po.Register("write-within-covar", &write_within_covar, "If supplied, write "
                  "to this wxfilename the within-class covariance (as a symmetric "
                  "matrix). E.g. --write-within-covar=exp/nnet5/within_covar.mat");
      opts.Register(&po);
      po.Read(argc, argv);
  
      if (po.NumArgs() < 2) {
        po.PrintUsage();
        exit(1);
      }
  
      FeatureTransformEstimate fte;
      std::string projection_wxfilename = po.GetArg(1);
  
      for (int32 i = 2; i <= po.NumArgs(); i++) {
        bool binary_in, add = true;
        Input ki(po.GetArg(i), &binary_in);
        fte.Read(ki.Stream(), binary_in, add);
      }
  
      Matrix<BaseFloat> mat;
      TpMatrix<BaseFloat> cholesky;
      fte.Estimate(opts, &mat,
                   (write_cholesky != "" || write_within_covar != "" ?
                    &cholesky : NULL));
      WriteKaldiObject(mat, projection_wxfilename, binary);
      if (write_cholesky != "") {
        WriteKaldiObject(cholesky, write_cholesky, binary);
      }
      if (write_within_covar != "") {
        SpMatrix<BaseFloat> within_var(cholesky.NumRows());
        within_var.AddTp2(1.0, cholesky, kNoTrans, 0.0);
        WriteKaldiObject(within_var, write_within_covar, binary);
      }
      return 0;
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }