Blame view
src/nnet2bin/nnet-modify-learning-rates.cc
8.03 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
// nnet2bin/nnet-modify-learning-rates.cc // Copyright 2013 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/train-nnet.h" #include "nnet2/am-nnet.h" namespace kaldi { namespace nnet2 { void SetMaxChange(BaseFloat max_change, Nnet *nnet) { for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *component = &(nnet->GetComponent(c)); AffineComponentPreconditioned *ac = dynamic_cast<AffineComponentPreconditioned*>(component); if (ac != NULL) ac->SetMaxChange(max_change); } } } } int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "This program modifies the learning rates so as to equalize the " "relative changes in parameters for each layer, while keeping their " "geometric mean the same (or changing it to a value specified using " "the --average-learning-rate option). " " " "Usage: nnet-modify-learning-rates [options] <prev-model> \\ " " <cur-model> <modified-cur-model> " "e.g.: nnet-modify-learning-rates --average-learning-rate=0.0002 \\ " " 5.mdl 6.mdl 6.mdl "; bool binary_write = true; bool retroactive = false; BaseFloat average_learning_rate = 0.0; BaseFloat first_layer_factor = 1.0; BaseFloat last_layer_factor = 1.0; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("average-learning-rate", &average_learning_rate, "If supplied, change learning rate geometric mean to the given " "value."); po.Register("first-layer-factor", &first_layer_factor, "Factor that " "reduces the target relative learning rate for first layer."); po.Register("last-layer-factor", &last_layer_factor, "Factor that " "reduces the target relative learning rate for last layer."); po.Register("retroactive", &retroactive, "If true, scale the parameter " "differences as well."); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } KALDI_ASSERT(average_learning_rate >= 0); std::string prev_nnet_rxfilename = po.GetArg(1), cur_nnet_rxfilename = po.GetArg(2), modified_cur_nnet_rxfilename = po.GetOptArg(3); TransitionModel trans_model; AmNnet am_prev_nnet, am_cur_nnet; { bool binary_read; Input ki(prev_nnet_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_prev_nnet.Read(ki.Stream(), binary_read); } { bool binary_read; Input ki(cur_nnet_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_cur_nnet.Read(ki.Stream(), binary_read); } if (am_prev_nnet.GetNnet().GetParameterDim() != am_cur_nnet.GetNnet().GetParameterDim()) { KALDI_WARN << "Parameter-dim mismatch, cannot equalize the relative " << "changes in parameters for each layer."; exit(0); } int32 ret = 0; // Gets relative parameter differences. int32 num_updatable = am_prev_nnet.GetNnet().NumUpdatableComponents(); Vector<BaseFloat> relative_diff(num_updatable); { Nnet diff_nnet(am_prev_nnet.GetNnet()); diff_nnet.AddNnet(-1.0, am_cur_nnet.GetNnet()); diff_nnet.ComponentDotProducts(diff_nnet, &relative_diff); relative_diff.ApplyPow(0.5); Vector<BaseFloat> baseline_prod(num_updatable); am_prev_nnet.GetNnet().ComponentDotProducts(am_prev_nnet.GetNnet(), &baseline_prod); baseline_prod.ApplyPow(0.5); relative_diff.DivElements(baseline_prod); KALDI_LOG << "Relative parameter differences per layer are " << relative_diff; // If relative parameter difference for a certain is zero, set it to the // mean of the rest values. int32 num_zero = 0; for (int32 i = 0; i < num_updatable; i++) { if (relative_diff(i) == 0.0) { num_zero++; } } if (num_zero > 0) { BaseFloat average_diff = relative_diff.Sum() / static_cast<BaseFloat>(num_updatable - num_zero); for (int32 i = 0; i < num_updatable; i++) { if (relative_diff(i) == 0.0) { relative_diff(i) = average_diff; } } KALDI_LOG << "Zeros detected in the relative parameter difference " << "vector, updating the vector to " << relative_diff; } } // Gets learning rates for previous neural net. Vector<BaseFloat> prev_nnet_learning_rates(num_updatable), cur_nnet_learning_rates(num_updatable); am_prev_nnet.GetNnet().GetLearningRates(&prev_nnet_learning_rates); am_cur_nnet.GetNnet().GetLearningRates(&cur_nnet_learning_rates); KALDI_LOG << "Learning rates for previous model per layer are " << prev_nnet_learning_rates; KALDI_LOG << "Learning rates for current model per layer are " << cur_nnet_learning_rates; // Gets target geometric mean. BaseFloat target_geometric_mean = 0.0; if (average_learning_rate == 0.0) { target_geometric_mean = Exp(cur_nnet_learning_rates.SumLog() / static_cast<BaseFloat>(num_updatable)); } else { target_geometric_mean = average_learning_rate; } KALDI_ASSERT(target_geometric_mean > 0.0); // Works out the new learning rates. We start from the previous model; // this ensures that if this program is run twice, we get consistent // results even if it's overwritten the current model. Vector<BaseFloat> nnet_learning_rates(prev_nnet_learning_rates); nnet_learning_rates.DivElements(relative_diff); KALDI_ASSERT(last_layer_factor > 0.0); nnet_learning_rates(num_updatable - 1) *= last_layer_factor; KALDI_ASSERT(first_layer_factor > 0.0); nnet_learning_rates(0) *= first_layer_factor; BaseFloat cur_geometric_mean = Exp(nnet_learning_rates.SumLog() / static_cast<BaseFloat>(num_updatable)); nnet_learning_rates.Scale(target_geometric_mean / cur_geometric_mean); KALDI_LOG << "New learning rates for current model per layer are " << nnet_learning_rates; // Changes the parameter differences if --retroactivate is set to true. if (retroactive) { Vector<BaseFloat> scale_factors(nnet_learning_rates); scale_factors.DivElements(prev_nnet_learning_rates); am_cur_nnet.GetNnet().AddNnet(-1.0, am_prev_nnet.GetNnet()); am_cur_nnet.GetNnet().ScaleComponents(scale_factors); am_cur_nnet.GetNnet().AddNnet(1.0, am_prev_nnet.GetNnet()); KALDI_LOG << "Scale parameter difference retroactively. Scaling factors " << "are " << scale_factors; } // Sets learning rates and writes updated model. am_cur_nnet.GetNnet().SetLearningRates(nnet_learning_rates); SetMaxChange(0.0, &(am_cur_nnet.GetNnet())); Output ko(modified_cur_nnet_rxfilename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_cur_nnet.Write(ko.Stream(), binary_write); return ret; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |