Blame view
src/nnet2bin/nnet-normalize-stddev.cc
6.64 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
// nnet2bin/nnet-normalize-stddev.cc // Copyright 2013 Guoguo Chen // 2014 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/train-nnet.h" #include "nnet2/am-nnet.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "This program first identifies any affine or block affine layers that " "are followed by pnorm and then renormalize layers. Then it rescales " "those layers such that the parameter stddev is 1.0 after scaling " "(the target stddev is configurable by the --stddev option). " "If you supply the option --stddev-from=<model-filename>, it rescales " "those layers to match the standard deviations of corresponding layers " "in the specified model. " " " "Usage: nnet-normalize-stddev [options] <model-in> <model-out> " " e.g.: nnet-normalize-stddev final.mdl final.mdl "; bool binary_write = true; BaseFloat stddev = 1.0; std::string reference_model_filename; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("stddev-from", &reference_model_filename, "Reference model"); po.Register("stddev", &stddev, "Target standard deviation that we normalize " "to (note: is overridden by --stddev-from option, if supplied)"); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1), normalized_nnet_rxfilename = po.GetArg(2); TransitionModel trans_model; AmNnet am_nnet; { bool binary_read; Input ki(nnet_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_nnet.Read(ki.Stream(), binary_read); } int32 ret = 0; // Works out the layers that we would like to normalize: any affine or block // affine layers that are followed by pnorm and then renormalize layers. std::vector<int32> identified_components; for (int32 c = 0; c < am_nnet.GetNnet().NumComponents() - 2; c++) { // Checks if the current layer is an affine layer or block affine layer. // Also includes PreconditionedAffineComponent and // PreconditionedAffineComponentOnline, since they are child classes of // AffineComponent. kaldi::nnet2::Component *component = &(am_nnet.GetNnet().GetComponent(c)); AffineComponent *ac = dynamic_cast<AffineComponent*>(component); BlockAffineComponent *bac = dynamic_cast<BlockAffineComponent*>(component); if (ac == NULL && bac == NULL) continue; // Checks if the next layer is a pnorm layer. component = &(am_nnet.GetNnet().GetComponent(c + 1)); PnormComponent *pc = dynamic_cast<PnormComponent*>(component); if (pc == NULL) continue; // Checks if the layer after the pnorm layer is a NormalizeComponent // or a PowerComponent followed by a NormalizeComponent component = &(am_nnet.GetNnet().GetComponent(c + 2)); NormalizeComponent *nc = dynamic_cast<NormalizeComponent*>(component); PowerComponent *pwc = dynamic_cast<PowerComponent*>(component); if (nc == NULL && pwc == NULL) continue; if (pwc != NULL) { // verify it's PowerComponent followed by // NormalizeComponent. if (c + 3 >= am_nnet.GetNnet().NumComponents()) continue; component = &(am_nnet.GetNnet().GetComponent(c + 3)); nc = dynamic_cast<NormalizeComponent*>(component); if (nc == NULL) continue; } // This is the layer that we would like to normalize. identified_components.push_back(c); } AmNnet am_nnet_ref; if (!reference_model_filename.empty()) { bool binary_read; Input ki(reference_model_filename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_nnet_ref.Read(ki.Stream(), binary_read); KALDI_ASSERT(am_nnet_ref.GetNnet().NumComponents() == am_nnet.GetNnet().NumComponents()); } BaseFloat ref_stddev = 0.0; // Normalizes the identified layers. for (int32 c = 0; c < identified_components.size(); c++) { ref_stddev = stddev; if (!reference_model_filename.empty()) { kaldi::nnet2::Component *component = &(am_nnet_ref.GetNnet().GetComponent(identified_components[c])); UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(component); KALDI_ASSERT(uc != NULL); Vector<BaseFloat> params(uc->GetParameterDim()); uc->Vectorize(¶ms); BaseFloat params_average = params.Sum() / static_cast<BaseFloat>(params.Dim()); params.Add(-1.0 * params_average); ref_stddev = sqrt(VecVec(params, params) / static_cast<BaseFloat>(params.Dim())); } kaldi::nnet2::Component *component = &(am_nnet.GetNnet().GetComponent(identified_components[c])); UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(component); KALDI_ASSERT(uc != NULL); Vector<BaseFloat> params(uc->GetParameterDim()); uc->Vectorize(¶ms); BaseFloat params_average = params.Sum() / static_cast<BaseFloat>(params.Dim()); params.Add(-1.0 * params_average); BaseFloat params_stddev = sqrt(VecVec(params, params) / static_cast<BaseFloat>(params.Dim())); if (params_stddev > 0.0) { uc->Scale(ref_stddev / params_stddev); KALDI_LOG << "Normalized component " << identified_components[c]; } } // Writes the normalized model. Output ko(normalized_nnet_rxfilename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_nnet.Write(ko.Stream(), binary_write); return ret; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |