Blame view
src/nnet2bin/nnet-train-simple.cc
3.64 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
// nnet2bin/nnet-train-simple.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/train-nnet.h" #include "nnet2/am-nnet.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Train the neural network parameters with backprop and stochastic " "gradient descent using minibatches. Training examples would be " "produced by nnet-get-egs. " " " "Usage: nnet-train-simple [options] <model-in> <training-examples-in> <model-out> " " " "e.g.: " "nnet-train-simple 1.nnet ark:1.egs 2.nnet "; bool binary_write = true; bool zero_stats = true; int32 srand_seed = 0; std::string use_gpu = "yes"; NnetSimpleTrainerConfig train_config; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("zero-stats", &zero_stats, "If true, zero occupation " "counts stored with the neural net (only affects mixing up)."); po.Register("srand", &srand_seed, "Seed for random number generator " "(relevant if you have layers of type AffineComponentPreconditioned " "with l2-penalty != 0.0"); po.Register("use-gpu", &use_gpu, "yes|no|optional|wait, only has effect if compiled with CUDA"); train_config.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } srand(srand_seed); #if HAVE_CUDA==1 CuDevice::Instantiate().SelectGpuId(use_gpu); #endif std::string nnet_rxfilename = po.GetArg(1), examples_rspecifier = po.GetArg(2), nnet_wxfilename = po.GetArg(3); int64 num_examples; { TransitionModel trans_model; AmNnet am_nnet; { bool binary_read; Input ki(nnet_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_nnet.Read(ki.Stream(), binary_read); } if (zero_stats) am_nnet.GetNnet().ZeroStats(); SequentialNnetExampleReader example_reader(examples_rspecifier); num_examples = TrainNnetSimple(train_config, &(am_nnet.GetNnet()), &example_reader); { Output ko(nnet_wxfilename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_nnet.Write(ko.Stream(), binary_write); } } #if HAVE_CUDA==1 CuDevice::Instantiate().PrintProfile(); #endif KALDI_LOG << "Finished training, processed " << num_examples << " training examples. Wrote model to " << nnet_wxfilename; return (num_examples == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |