Blame view

src/nnet2bin/nnet-train-simple.cc 3.64 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  // nnet2bin/nnet-train-simple.cc
  
  // Copyright 2012  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "hmm/transition-model.h"
  #include "nnet2/train-nnet.h"
  #include "nnet2/am-nnet.h"
  
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      using namespace kaldi::nnet2;
      typedef kaldi::int32 int32;
      typedef kaldi::int64 int64;
  
      const char *usage =
          "Train the neural network parameters with backprop and stochastic
  "
          "gradient descent using minibatches.  Training examples would be
  "
          "produced by nnet-get-egs.
  "
          "
  "
          "Usage:  nnet-train-simple [options] <model-in> <training-examples-in> <model-out>
  "
          "
  "
          "e.g.:
  "
          "nnet-train-simple 1.nnet ark:1.egs 2.nnet
  ";
      
      bool binary_write = true;
      bool zero_stats = true;
      int32 srand_seed = 0;
      std::string use_gpu = "yes";
      NnetSimpleTrainerConfig train_config;
      
      ParseOptions po(usage);
      po.Register("binary", &binary_write, "Write output in binary mode");
      po.Register("zero-stats", &zero_stats, "If true, zero occupation "
                  "counts stored with the neural net (only affects mixing up).");
      po.Register("srand", &srand_seed, "Seed for random number generator "
                  "(relevant if you have layers of type AffineComponentPreconditioned "
                  "with l2-penalty != 0.0");
      po.Register("use-gpu", &use_gpu,
                  "yes|no|optional|wait, only has effect if compiled with CUDA");
      
      train_config.Register(&po);
      
      po.Read(argc, argv);
      
      if (po.NumArgs() != 3) {
        po.PrintUsage();
        exit(1);
      }
      srand(srand_seed);
      
  #if HAVE_CUDA==1
      CuDevice::Instantiate().SelectGpuId(use_gpu);
  #endif
  
      std::string nnet_rxfilename = po.GetArg(1),
          examples_rspecifier = po.GetArg(2),
          nnet_wxfilename = po.GetArg(3);
  
      int64 num_examples;
      
      {
        TransitionModel trans_model;
        AmNnet am_nnet;
        {
          bool binary_read;
          Input ki(nnet_rxfilename, &binary_read);
          trans_model.Read(ki.Stream(), binary_read);
          am_nnet.Read(ki.Stream(), binary_read);
        }
  
        if (zero_stats) am_nnet.GetNnet().ZeroStats();
  
        SequentialNnetExampleReader example_reader(examples_rspecifier);
        
        num_examples = TrainNnetSimple(train_config, &(am_nnet.GetNnet()),
                                       &example_reader);
      
        {
          Output ko(nnet_wxfilename, binary_write);
          trans_model.Write(ko.Stream(), binary_write);
          am_nnet.Write(ko.Stream(), binary_write);
        }
      }
  #if HAVE_CUDA==1
      CuDevice::Instantiate().PrintProfile();
  #endif
      
      KALDI_LOG << "Finished training, processed " << num_examples
                << " training examples.  Wrote model to "
                << nnet_wxfilename;
      return (num_examples == 0 ? 1 : 0);
    } catch(const std::exception &e) {
      std::cerr << e.what() << '
  ';
      return -1;
    }
  }