Blame view
src/nnet2bin/nnet-train-transitions.cc
5.15 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
// nnet2bin/nnet-train-transitions.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet2/am-nnet.h" #include "hmm/transition-model.h" #include "tree/context-dep.h" namespace kaldi { namespace nnet2 { void SetPriors(const TransitionModel &tmodel, const Vector<double> &transition_accs, double prior_floor, AmNnet *am_nnet) { KALDI_ASSERT(tmodel.NumPdfs() == am_nnet->NumPdfs()); Vector<BaseFloat> pdf_counts(tmodel.NumPdfs()); KALDI_ASSERT(transition_accs(0) == 0.0); // There is // no zero transition-id. for (int32 tid = 1; tid < transition_accs.Dim(); tid++) { int32 pdf = tmodel.TransitionIdToPdf(tid); pdf_counts(pdf) += transition_accs(tid); } BaseFloat sum = pdf_counts.Sum(); KALDI_ASSERT(sum != 0.0); KALDI_ASSERT(prior_floor > 0.0 && prior_floor < 1.0); pdf_counts.Scale(1.0 / sum); pdf_counts.ApplyFloor(prior_floor); pdf_counts.Scale(1.0 / pdf_counts.Sum()); // normalize again. am_nnet->SetPriors(pdf_counts); } } // namespace nnet2 } // namespace kaldi int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; const char *usage = "Train the transition probabilities of a neural network acoustic model " " " "Usage: nnet-train-transitions [options] <nnet-in> <alignments-rspecifier> <nnet-out> " "e.g.: " " nnet-train-transitions 1.nnet \"ark:gunzip -c ali.*.gz|\" 2.nnet "; bool binary_write = true; bool set_priors = true; // Also set the per-pdf priors in the model. BaseFloat prior_floor = 5.0e-06; // The default was previously 1e-8, but // once we had problems with a pdf-id that // was not being seen in training, being // recognized all the time. This value // seemed to be the smallest prior of the // "seen" pdf-ids in one run. MleTransitionUpdateConfig transition_update_config; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("set-priors", &set_priors, "If true, also set priors in neural " "net (we divide by these in test time)"); po.Register("prior-floor", &prior_floor, "When setting priors, floor for " "priors"); transition_update_config.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1), ali_rspecifier = po.GetArg(2), nnet_wxfilename = po.GetArg(3); TransitionModel trans_model; AmNnet am_nnet; { bool binary_read; Input ki(nnet_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_nnet.Read(ki.Stream(), binary_read); } Vector<double> transition_accs; trans_model.InitStats(&transition_accs); int32 num_done = 0; SequentialInt32VectorReader ali_reader(ali_rspecifier); for (; ! ali_reader.Done(); ali_reader.Next()) { const std::vector<int32> alignment(ali_reader.Value()); for (size_t i = 0; i < alignment.size(); i++) { int32 tid = alignment[i]; BaseFloat weight = 1.0; trans_model.Accumulate(weight, tid, &transition_accs); } num_done++; } KALDI_LOG << "Accumulated transition stats from " << num_done << " utterances."; { BaseFloat objf_impr, count; trans_model.MleUpdate(transition_accs, transition_update_config, &objf_impr, &count); KALDI_LOG << "Transition model update: average " << (objf_impr/count) << " log-like improvement per frame over " << count << " frames."; } if (set_priors) { KALDI_LOG << "Setting priors of pdfs in the model."; SetPriors(trans_model, transition_accs, prior_floor, &am_nnet); } { Output ko(nnet_wxfilename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_nnet.Write(ko.Stream(), binary_write); } KALDI_LOG << "Trained transitions of neural network model and wrote it to " << nnet_wxfilename; return 0; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |