Blame view
src/nnet2bin/nnet1-to-raw-nnet.cc
7.37 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
// nnet2bin/nnet1-to-raw-nnet.cc // Copyright 2013 Johns Hopkins University (author: Daniel Povey, Hainan Xu) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet/nnet-nnet.h" #include "nnet/nnet-affine-transform.h" #include "nnet/nnet-activation.h" #include "nnet/nnet-various.h" #include "nnet2/nnet-nnet.h" #include "nnet2/nnet-component.h" namespace kaldi { nnet2::Component *ConvertAffineTransformComponent( const nnet1::Component &nnet1_component, const bool use_preconditioned_affine_component) { const nnet1::AffineTransform *affine = dynamic_cast<const nnet1::AffineTransform*>(&nnet1_component); KALDI_ASSERT(affine != NULL); // default learning rate is 1.0e-05, you can use the --learning-rate or // --learning-rates option to nnet-am-copy to change it if you need. BaseFloat learning_rate = 1.0e-05; if (use_preconditioned_affine_component) { int32 rank_in = 20, rank_out = 80, update_period = 4; BaseFloat num_samples_history = 2000., alpha = 4.; return new nnet2::AffineComponentPreconditionedOnline( nnet2::AffineComponent(affine->GetLinearity(), affine->GetBias(), learning_rate), rank_in, rank_out, update_period, num_samples_history, alpha); } else { return new nnet2::AffineComponent(affine->GetLinearity(), affine->GetBias(), learning_rate); } } nnet2::Component *ConvertSoftmaxComponent( const nnet1::Component &nnet1_component) { const nnet1::Softmax *softmax = dynamic_cast<const nnet1::Softmax*>(&nnet1_component); KALDI_ASSERT(softmax != NULL); return new nnet2::SoftmaxComponent(softmax->InputDim()); } nnet2::Component *ConvertSigmoidComponent( const nnet1::Component &nnet1_component) { const nnet1::Sigmoid *sigmoid = dynamic_cast<const nnet1::Sigmoid*>(&nnet1_component); KALDI_ASSERT(sigmoid != NULL); return new nnet2::SigmoidComponent(sigmoid->InputDim()); } nnet2::Component *ConvertSpliceComponent( const nnet1::Component &nnet1_component) { const nnet1::Splice *splice = dynamic_cast<const nnet1::Splice*>(&nnet1_component); KALDI_ASSERT(splice != NULL); // int32 low, high; std::vector<int32> frame_offsets; std::ostringstream ostr; splice->WriteData(ostr, false); std::istringstream istr(ostr.str()); ReadIntegerVector(istr, false, &frame_offsets); nnet2::SpliceComponent *res = new nnet2::SpliceComponent(); res->Init(splice->InputDim(), frame_offsets); return res; } nnet2::Component *ConvertAddShiftComponent( const nnet1::Component &nnet1_component) { const nnet1::AddShift *add_shift = dynamic_cast<const nnet1::AddShift*>(&nnet1_component); KALDI_ASSERT(add_shift != NULL); Vector<BaseFloat> bias(add_shift->NumParams()); add_shift->GetParams(&bias); CuVector<BaseFloat> cu_bias(bias); nnet2::FixedBiasComponent *res = new nnet2::FixedBiasComponent(); res->Init(cu_bias); return res; } nnet2::Component *ConvertRescaleComponent( const nnet1::Component &nnet1_component) { const nnet1::Rescale *rescale = dynamic_cast<const nnet1::Rescale*>(&nnet1_component); KALDI_ASSERT(rescale != NULL); Vector<BaseFloat> scale(rescale->NumParams()); rescale->GetParams(&scale); CuVector<BaseFloat> cu_scale(scale); nnet2::FixedScaleComponent *res = new nnet2::FixedScaleComponent(); res->Init(cu_scale); return res; } nnet2::Component *ConvertComponent(const nnet1::Component &nnet1_component, const bool use_preconditioned_affine_component) { nnet1::Component::ComponentType type_in = nnet1_component.GetType(); switch (type_in) { case nnet1::Component::kAffineTransform: return ConvertAffineTransformComponent(nnet1_component, use_preconditioned_affine_component); case nnet1::Component::kSoftmax: return ConvertSoftmaxComponent(nnet1_component); case nnet1::Component::kSigmoid: return ConvertSigmoidComponent(nnet1_component); case nnet1::Component::kSplice: return ConvertSpliceComponent(nnet1_component); // note, this will for now only handle the // special case nnet1::Component::where all splice indexes in nnet1_component are contiguous, e.g. // -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5 . case nnet1::Component::kAddShift: return ConvertAddShiftComponent(nnet1_component); // convert to FixedBiasComponent case nnet1::Component::kRescale: return ConvertRescaleComponent(nnet1_component); // convert to FixedScaleComponent default: KALDI_ERR << "Un-handled nnet1 component type " << nnet1::Component::TypeToMarker(type_in); return NULL; } } nnet2::Nnet *ConvertNnet1ToNnet2(const nnet1::Nnet &nnet1, const bool use_preconditioned_affine_component) { // get a vector of nnet2::Component pointers and initialize the nnet2::Nnet with it. size_t size = nnet1.NumComponents(); std::vector<nnet2::Component*> *components = new std::vector<nnet2::Component*>(); components->resize(size); for (size_t i = 0; i < size; i++) { (*components)[i] = ConvertComponent(nnet1.GetComponent(i), use_preconditioned_affine_component); } nnet2::Nnet *res = new nnet2::Nnet(); res->Init(components); delete components; return res; } } // namespace kaldi int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; const char *usage = "Convert nnet1 neural net to nnet2 'raw' neural net " " " "Usage: nnet1-to-raw-nnet [options] <nnet1-in> <nnet2-out> " "e.g.: " " nnet1-to-raw-nnet srcdir/final.nnet - | nnet-am-init dest/tree dest/topo - dest/0.mdl "; bool binary_write = true, use_preconditioned_affine_component = false; int32 srand_seed = 0; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("use_preconditioned_affine_component", &use_preconditioned_affine_component, "Using AffineComponentPreconditionOnline instead AffineComponent"); po.Read(argc, argv); srand(srand_seed); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string nnet1_rxfilename = po.GetArg(1), raw_nnet2_wxfilename = po.GetArg(2); nnet1::Nnet nnet1; ReadKaldiObject(nnet1_rxfilename, &nnet1); nnet2::Nnet *nnet2 = ConvertNnet1ToNnet2(nnet1, use_preconditioned_affine_component); WriteKaldiObject(*nnet2, raw_nnet2_wxfilename, binary_write); KALDI_LOG << "Converted nnet1 neural net to raw nnet2 and wrote it to " << PrintableWxfilename(raw_nnet2_wxfilename); delete nnet2; return 0; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |