Blame view
src/nnet3/decodable-simple-looped.h
13.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
// nnet3/decodable-simple-looped.h // Copyright 2016 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET3_DECODABLE_SIMPLE_LOOPED_H_ #define KALDI_NNET3_DECODABLE_SIMPLE_LOOPED_H_ #include <vector> #include "base/kaldi-common.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "itf/decodable-itf.h" #include "nnet3/nnet-optimize.h" #include "nnet3/nnet-compute.h" #include "nnet3/am-nnet-simple.h" namespace kaldi { namespace nnet3 { // See also nnet-am-decodable-simple.h, which is a decodable object that's based // on breaking up the input into fixed chunks. The decodable object defined here is based on // 'looped' computations, which naturally handle infinite left-context (but are // only ideal for systems that have only recurrence in the forward direction, // i.e. not BLSTMs... because there isn't a natural way to enforce extra right // context for each chunk.) // Note: the 'simple' in the name means it applies to networks for which // IsSimpleNnet(nnet) would return true. 'looped' means we use looped // computations, with a kGotoLabel statement at the end of it. struct NnetSimpleLoopedComputationOptions { int32 extra_left_context_initial; int32 frame_subsampling_factor; int32 frames_per_chunk; BaseFloat acoustic_scale; bool debug_computation; NnetOptimizeOptions optimize_config; NnetComputeOptions compute_config; NnetSimpleLoopedComputationOptions(): extra_left_context_initial(0), frame_subsampling_factor(1), frames_per_chunk(20), acoustic_scale(0.1), debug_computation(false) { } void Check() const { KALDI_ASSERT(extra_left_context_initial >= 0 && frame_subsampling_factor > 0 && frames_per_chunk > 0 && acoustic_scale > 0.0); } void Register(OptionsItf *opts) { opts->Register("extra-left-context-initial", &extra_left_context_initial, "Extra left context to use at the first frame of an utterance (note: " "this will just consist of repeats of the first frame, and should not " "usually be necessary."); opts->Register("frame-subsampling-factor", &frame_subsampling_factor, "Required if the frame-rate of the output (e.g. in 'chain' " "models) is less than the frame-rate of the original " "alignment."); opts->Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic log-likelihoods"); opts->Register("frames-per-chunk", &frames_per_chunk, "Number of frames in each chunk that is separately evaluated " "by the neural net. Measured before any subsampling, if the " "--frame-subsampling-factor options is used (i.e. counts " "input frames. This is only advisory (may be rounded up " "if needed."); opts->Register("debug-computation", &debug_computation, "If true, turn on " "debug for the actual computation (very verbose!)"); // register the optimization options with the prefix "optimization". ParseOptions optimization_opts("optimization", opts); optimize_config.Register(&optimization_opts); // register the compute options with the prefix "computation". ParseOptions compute_opts("computation", opts); compute_config.Register(&compute_opts); } }; /** When you instantiate class DecodableNnetSimpleLooped, you should give it a const reference to this class, that has been previously initialized. */ class DecodableNnetSimpleLoopedInfo { public: // The constructor takes a non-const pointer to 'nnet' because it may have to // modify it to be able to take multiple iVectors. DecodableNnetSimpleLoopedInfo(const NnetSimpleLoopedComputationOptions &opts, Nnet *nnet); // This constructor takes the priors from class AmNnetSimple (so it can divide by // them). DecodableNnetSimpleLoopedInfo(const NnetSimpleLoopedComputationOptions &opts, AmNnetSimple *nnet); // this constructor is for use in testing. DecodableNnetSimpleLoopedInfo(const NnetSimpleLoopedComputationOptions &opts, const Vector<BaseFloat> &priors, Nnet *nnet); void Init(const NnetSimpleLoopedComputationOptions &opts, Nnet *nnet); const NnetSimpleLoopedComputationOptions &opts; const Nnet &nnet; // the log priors (or the empty vector if the priors are not set in the model) CuVector<BaseFloat> log_priors; // frames_left_context equals the model left context plus the value of the // --extra-left-context-initial option. int32 frames_left_context; // frames_right_context is the same as the right-context of the model. int32 frames_right_context; // The frames_per_chunk_ equals the number of input frames we need for each // chunk (except for the first chunk). This divided by // opts_.frame_subsampling_factor gives the number of output frames. int32 frames_per_chunk; // The output dimension of the neural network. int32 output_dim; // True if the neural net accepts iVectors. If so, the neural net will have been modified // to accept the iVectors bool has_ivectors; // The 3 computation requests that are used to create the looped // computation are stored in the class, as we need them to work out // exactly shich iVectors are needed. ComputationRequest request1, request2, request3; // The compiled, 'looped' computation. NnetComputation computation; }; /* This class handles the neural net computation; it's mostly accessed via other wrapper classes. It can accept just input features, or input features plus iVectors. */ class DecodableNnetSimpleLooped { public: /** This constructor takes features as input, and you can either supply a single iVector input, estimated in batch-mode ('ivector'), or 'online' iVectors ('online_ivectors' and 'online_ivector_period', or none at all. Note: it stores references to all arguments to the constructor, so don't delete them till this goes out of scope. @param [in] info This helper class contains all the static pre-computed information this class needs, and contains a pointer to the neural net. @param [in] feats The input feature matrix. @param [in] ivector If you are using iVectors estimated in batch mode, a pointer to the iVector, else NULL. @param [in] ivector If you are using iVectors estimated in batch mode, a pointer to the iVector, else NULL. @param [in] online_ivectors If you are using iVectors estimated 'online' a pointer to the iVectors, else NULL. @param [in] online_ivector_period If you are using iVectors estimated 'online' (i.e. if online_ivectors != NULL) gives the periodicity (in frames) with which the iVectors are estimated. */ DecodableNnetSimpleLooped(const DecodableNnetSimpleLoopedInfo &info, const MatrixBase<BaseFloat> &feats, const VectorBase<BaseFloat> *ivector = NULL, const MatrixBase<BaseFloat> *online_ivectors = NULL, int32 online_ivector_period = 1); // returns the number of frames of likelihoods. The same as feats_.NumRows() // in the normal case (but may be less if opts_.frame_subsampling_factor != // 1). inline int32 NumFrames() const { return num_subsampled_frames_; } inline int32 OutputDim() const { return info_.output_dim; } // Gets the output for a particular frame, with 0 <= frame < NumFrames(). // 'output' must be correctly sized (with dimension OutputDim()). Note: // you're expected to call this, and GetOutput(), in an order of increasing // frames. If you deviate from this, one of these calls may crash. void GetOutputForFrame(int32 subsampled_frame, VectorBase<BaseFloat> *output); // Gets the output for a particular frame and pdf_id, with // 0 <= subsampled_frame < NumFrames(), // and 0 <= pdf_id < OutputDim(). inline BaseFloat GetOutput(int32 subsampled_frame, int32 pdf_id) { KALDI_ASSERT(subsampled_frame >= current_log_post_subsampled_offset_ && "Frames must be accessed in order."); while (subsampled_frame >= current_log_post_subsampled_offset_ + current_log_post_.NumRows()) AdvanceChunk(); return current_log_post_(subsampled_frame - current_log_post_subsampled_offset_, pdf_id); } private: KALDI_DISALLOW_COPY_AND_ASSIGN(DecodableNnetSimpleLooped); // This function does the computation for the next chunk. void AdvanceChunk(); void AdvanceChunkInternal(const MatrixBase<BaseFloat> &input_feats, const VectorBase<BaseFloat> &ivector); // Gets the iVector for the specified frame., if we are // using iVectors (else does nothing). void GetCurrentIvector(int32 input_frame, Vector<BaseFloat> *ivector); // returns dimension of the provided iVectors if supplied, or 0 otherwise. int32 GetIvectorDim() const; const DecodableNnetSimpleLoopedInfo &info_; NnetComputer computer_; const MatrixBase<BaseFloat> &feats_; // note: num_subsampled_frames_ will equal feats_.NumRows() in the normal case // when opts_.frame_subsampling_factor == 1. int32 num_subsampled_frames_; // ivector_ is the iVector if we're using iVectors that are estimated in batch // mode. const VectorBase<BaseFloat> *ivector_; // online_ivector_feats_ is the iVectors if we're using online-estimated ones. const MatrixBase<BaseFloat> *online_ivector_feats_; // online_ivector_period_ helps us interpret online_ivector_feats_; it's the // number of frames the rows of ivector_feats are separated by. int32 online_ivector_period_; // The current log-posteriors that we got from the last time we // ran the computation. Matrix<BaseFloat> current_log_post_; // The number of chunks we have computed so far. int32 num_chunks_computed_; // The time-offset of the current log-posteriors, equals // (num_chunks_computed_ - 1) * // (info_.frames_per_chunk_ / info_.opts_.frame_subsampling_factor). int32 current_log_post_subsampled_offset_; }; class DecodableAmNnetSimpleLooped: public DecodableInterface { public: /** This constructor takes features as input, and you can either supply a single iVector input, estimated in batch-mode ('ivector'), or 'online' iVectors ('online_ivectors' and 'online_ivector_period', or none at all. Note: it stores references to all arguments to the constructor, so don't delete them till this goes out of scope. @param [in] info This helper class contains all the static pre-computed information this class needs, and contains a pointer to the neural net. If you want prior subtraction to be done, you should have initialized this with the constructor that takes class AmNnetSimple. @param [in] trans_model The transition model to use. This takes care of the mapping from transition-id (which is an arg to LogLikelihood()) to pdf-id (which is used internally). @param [in] feats A pointer to the input feature matrix; must be non-NULL. We @param [in] ivector If you are using iVectors estimated in batch mode, a pointer to the iVector, else NULL. @param [in] ivector If you are using iVectors estimated in batch mode, a pointer to the iVector, else NULL. @param [in] online_ivectors If you are using iVectors estimated 'online' a pointer to the iVectors, else NULL. @param [in] online_ivector_period If you are using iVectors estimated 'online' (i.e. if online_ivectors != NULL) gives the periodicity (in frames) with which the iVectors are estimated. */ DecodableAmNnetSimpleLooped(const DecodableNnetSimpleLoopedInfo &info, const TransitionModel &trans_model, const MatrixBase<BaseFloat> &feats, const VectorBase<BaseFloat> *ivector = NULL, const MatrixBase<BaseFloat> *online_ivectors = NULL, int32 online_ivector_period = 1); virtual BaseFloat LogLikelihood(int32 frame, int32 transition_id); virtual inline int32 NumFramesReady() const { return decodable_nnet_.NumFrames(); } virtual int32 NumIndices() const { return trans_model_.NumTransitionIds(); } virtual bool IsLastFrame(int32 frame) const { KALDI_ASSERT(frame < NumFramesReady()); return (frame == NumFramesReady() - 1); } private: KALDI_DISALLOW_COPY_AND_ASSIGN(DecodableAmNnetSimpleLooped); DecodableNnetSimpleLooped decodable_nnet_; const TransitionModel &trans_model_; }; } // namespace nnet3 } // namespace kaldi #endif // KALDI_NNET3_DECODABLE_SIMPLE_LOOPED_H_ |