Blame view
src/nnet3/discriminative-supervision.cc
16.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
// nnet3/discriminative-supervision.cc // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // 2014-2015 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet3/discriminative-supervision.h" #include "lat/lattice-functions.h" namespace kaldi { namespace discriminative { DiscriminativeSupervision::DiscriminativeSupervision( const DiscriminativeSupervision &other): weight(other.weight), num_sequences(other.num_sequences), frames_per_sequence(other.frames_per_sequence), num_ali(other.num_ali), den_lat(other.den_lat) { } void DiscriminativeSupervision::Swap(DiscriminativeSupervision *other) { std::swap(weight, other->weight); std::swap(num_sequences, other->num_sequences); std::swap(frames_per_sequence, other->frames_per_sequence); std::swap(num_ali, other->num_ali); std::swap(den_lat, other->den_lat); } bool DiscriminativeSupervision::operator == ( const DiscriminativeSupervision &other) const { return ( weight == other.weight && num_sequences == other.num_sequences && frames_per_sequence == other.frames_per_sequence && num_ali == other.num_ali && fst::Equal(den_lat, other.den_lat) ); } void DiscriminativeSupervision::Write(std::ostream &os, bool binary) const { WriteToken(os, binary, "<DiscriminativeSupervision>"); WriteToken(os, binary, "<Weight>"); WriteBasicType(os, binary, weight); WriteToken(os, binary, "<NumSequences>"); WriteBasicType(os, binary, num_sequences); WriteToken(os, binary, "<FramesPerSeq>"); WriteBasicType(os, binary, frames_per_sequence); KALDI_ASSERT(frames_per_sequence > 0 && num_sequences > 0); WriteToken(os, binary, "<NumAli>"); WriteIntegerVector(os, binary, num_ali); WriteToken(os, binary, "<DenLat>"); if (!WriteLattice(os, binary, den_lat)) { // We can't return error status from this function so we // throw an exception. KALDI_ERR << "Error writing denominator lattice to stream"; } WriteToken(os, binary, "</DiscriminativeSupervision>"); } void DiscriminativeSupervision::Read(std::istream &is, bool binary) { ExpectToken(is, binary, "<DiscriminativeSupervision>"); ExpectToken(is, binary, "<Weight>"); ReadBasicType(is, binary, &weight); ExpectToken(is, binary, "<NumSequences>"); ReadBasicType(is, binary, &num_sequences); ExpectToken(is, binary, "<FramesPerSeq>"); ReadBasicType(is, binary, &frames_per_sequence); KALDI_ASSERT(frames_per_sequence > 0 && num_sequences > 0); ExpectToken(is, binary, "<NumAli>"); ReadIntegerVector(is, binary, &num_ali); ExpectToken(is, binary, "<DenLat>"); { Lattice *lat = NULL; if (!ReadLattice(is, binary, &lat) || lat == NULL) { // We can't return error status from this function so we // throw an exception. KALDI_ERR << "Error reading Lattice from stream"; } den_lat = *lat; delete lat; TopSort(&den_lat); } ExpectToken(is, binary, "</DiscriminativeSupervision>"); } bool DiscriminativeSupervision::Initialize(const std::vector<int32> &num_ali, const Lattice &den_lat, BaseFloat weight) { if (num_ali.size() == 0) return false; if (den_lat.NumStates() == 0) return false; this->weight = weight; this->num_sequences = 1; this->frames_per_sequence = num_ali.size(); this->num_ali = num_ali; this->den_lat = den_lat; KALDI_ASSERT(TopSort(&(this->den_lat))); // Checks if num frames in alignment matches lattice Check(); return true; } void DiscriminativeSupervision::Check() const { int32 num_frames_subsampled = num_ali.size(); KALDI_ASSERT(num_frames_subsampled == num_sequences * frames_per_sequence); { std::vector<int32> state_times; int32 max_time = LatticeStateTimes(den_lat, &state_times); KALDI_ASSERT(max_time == num_frames_subsampled); } } DiscriminativeSupervisionSplitter::DiscriminativeSupervisionSplitter( const SplitDiscriminativeSupervisionOptions &config, const TransitionModel &tmodel, const DiscriminativeSupervision &supervision): config_(config), tmodel_(tmodel), supervision_(supervision) { if (supervision_.num_sequences != 1) { KALDI_WARN << "Splitting already-reattached sequence (only expected in " << "testing code)"; } KALDI_ASSERT(supervision_.num_sequences == 1); // For now, don't allow splitting already merged examples den_lat_ = supervision_.den_lat; PrepareLattice(&den_lat_, &den_lat_scores_); int32 num_states = den_lat_.NumStates(), num_frames = supervision_.frames_per_sequence * supervision_.num_sequences; KALDI_ASSERT(num_states > 0); int32 start_state = den_lat_.Start(); // Lattice should be top-sorted and connected, so start-state must be 0. KALDI_ASSERT(start_state == 0 && "Expecting start-state to be 0"); KALDI_ASSERT(num_states == den_lat_scores_.state_times.size()); KALDI_ASSERT(den_lat_scores_.state_times[start_state] == 0); KALDI_ASSERT(den_lat_scores_.state_times.back() == num_frames); } // Make sure that for any given pdf-id and any given frame, the den-lat has // only one transition-id mapping to that pdf-id, on the same frame. // It helps us to more completely minimize the lattice. Note: we // can't do this if the criterion is MPFE, because in that case the // objective function will be affected by the phone-identities being // different even if the pdf-ids are the same. void DiscriminativeSupervisionSplitter::CollapseTransitionIds( const std::vector<int32> &state_times, Lattice *lat) const { typedef Lattice::StateId StateId; typedef Lattice::Arc Arc; int32 num_frames = state_times.back(); // TODO: Check if this is always true StateId num_states = lat->NumStates(); std::vector<std::map<int32, int32> > pdf_to_tid(num_frames); for (StateId s = 0; s < num_states; s++) { int32 t = state_times[s]; for (fst::MutableArcIterator<Lattice> aiter(lat, s); !aiter.Done(); aiter.Next()) { KALDI_ASSERT(t >= 0 && t < num_frames); Arc arc = aiter.Value(); KALDI_ASSERT(arc.ilabel != 0 && arc.ilabel == arc.olabel); int32 pdf = tmodel_.TransitionIdToPdf(arc.ilabel); if (pdf_to_tid[t].count(pdf) != 0) { arc.ilabel = arc.olabel = pdf_to_tid[t][pdf]; aiter.SetValue(arc); } else { pdf_to_tid[t][pdf] = arc.ilabel; } } } } void DiscriminativeSupervisionSplitter::LatticeInfo::Check() const { // Check if all the vectors are of size num_states KALDI_ASSERT(state_times.size() == alpha.size() && state_times.size() == beta.size()); // Check that the states are ordered in increasing order of state_times. // This must be true since the states are in breadth-first search order. KALDI_ASSERT(IsSorted(state_times)); } void DiscriminativeSupervisionSplitter::GetFrameRange(int32 begin_frame, int32 num_frames, bool normalize, DiscriminativeSupervision *out_supervision) const { int32 end_frame = begin_frame + num_frames; // Note: end_frame is not included in the range of frames that the // output supervision object covers; it's one past the end. KALDI_ASSERT(num_frames > 0 && begin_frame >= 0 && begin_frame + num_frames <= supervision_.num_sequences * supervision_.frames_per_sequence); CreateRangeLattice(den_lat_, den_lat_scores_, begin_frame, end_frame, normalize, &(out_supervision->den_lat)); out_supervision->num_ali.clear(); std::copy(supervision_.num_ali.begin() + begin_frame, supervision_.num_ali.begin() + end_frame, std::back_inserter(out_supervision->num_ali)); out_supervision->num_sequences = 1; out_supervision->weight = supervision_.weight; out_supervision->frames_per_sequence = num_frames; out_supervision->Check(); } void DiscriminativeSupervisionSplitter::CreateRangeLattice( const Lattice &in_lat, const LatticeInfo &scores, int32 begin_frame, int32 end_frame, bool normalize, Lattice *out_lat) const { typedef Lattice::StateId StateId; const std::vector<int32> &state_times = scores.state_times; // Some checks to ensure the lattice and scores are prepared properly KALDI_ASSERT(state_times.size() == in_lat.NumStates()); if (!in_lat.Properties(fst::kTopSorted, true)) KALDI_ERR << "Input lattice must be topologically sorted."; std::vector<int32>::const_iterator begin_iter = std::lower_bound(state_times.begin(), state_times.end(), begin_frame), end_iter = std::lower_bound(begin_iter, state_times.end(), end_frame); KALDI_ASSERT(*begin_iter == begin_frame && (begin_iter == state_times.begin() || begin_iter[-1] < begin_frame)); // even if end_frame == supervision_.num_frames, there should be a state with // that frame index. KALDI_ASSERT(end_iter[-1] < end_frame && (end_iter < state_times.end() || *end_iter == end_frame)); StateId begin_state = begin_iter - state_times.begin(), end_state = end_iter - state_times.begin(); KALDI_ASSERT(end_state > begin_state); out_lat->DeleteStates(); out_lat->ReserveStates(end_state - begin_state + 2); // Add special start state StateId start_state = out_lat->AddState(); out_lat->SetStart(start_state); for (StateId i = begin_state; i < end_state; i++) out_lat->AddState(); // Add the special final-state. StateId final_state = out_lat->AddState(); out_lat->SetFinal(final_state, LatticeWeight::One()); for (StateId state = begin_state; state < end_state; state++) { StateId output_state = state - begin_state + 1; if (state_times[state] == begin_frame) { // we'd like to make this an initial state, but OpenFst doesn't allow // multiple initial states. Instead we add an epsilon transition to it // from our actual initial state. The weight on this // transition is the forward probability of the said 'initial state' LatticeWeight weight = LatticeWeight::One(); weight.SetValue1((normalize ? scores.beta[0] : 0.0) - scores.alpha[state]); // Add negative of the forward log-probability to the graph cost score, // since the acoustic scores would be changed later. // Assuming that the lattice is scaled with appropriate acoustic // scale. // We additionally normalize using the total lattice score. Since the // same score is added as normalizer to all the paths in the lattice, // the relative probabilities of the paths in the lattice is not affected. // Note: Doing a forward-backward on this split must result in a total // score of 0 because of the normalization. out_lat->AddArc(start_state, LatticeArc(0, 0, weight, output_state)); } else { KALDI_ASSERT(scores.state_times[state] < end_frame); } for (fst::ArcIterator<Lattice> aiter(in_lat, state); !aiter.Done(); aiter.Next()) { const LatticeArc &arc = aiter.Value(); StateId nextstate = arc.nextstate; if (nextstate >= end_state) { // A transition to any state outside the range becomes a transition to // our special final-state. // The weight is just the negative of the backward log-probability + // the arc cost. We again normalize with the total lattice score. LatticeWeight weight; //KALDI_ASSERT(scores.beta[state] < 0); weight.SetValue1(arc.weight.Value1() - scores.beta[nextstate]); weight.SetValue2(arc.weight.Value2()); // Add negative of the backward log-probability to the LM score, since // the acoustic scores would be changed later. // Note: We don't normalize here because that is already done with the // initial cost. out_lat->AddArc(output_state, LatticeArc(arc.ilabel, arc.olabel, weight, final_state)); } else { StateId output_nextstate = nextstate - begin_state + 1; out_lat->AddArc(output_state, LatticeArc(arc.ilabel, arc.olabel, arc.weight, output_nextstate)); } } } // Get rid of the word labels and put the // transition-ids on both sides. fst::Project(out_lat, fst::PROJECT_INPUT); fst::RmEpsilon(out_lat); if (config_.collapse_transition_ids) CollapseTransitionIds(state_times, out_lat); if (config_.determinize) { if (!config_.minimize) { Lattice tmp_lat; fst::Determinize(*out_lat, &tmp_lat); std::swap(*out_lat, tmp_lat); } else { Lattice tmp_lat; fst::Reverse(*out_lat, &tmp_lat); fst::Determinize(tmp_lat, out_lat); fst::Reverse(*out_lat, &tmp_lat); fst::Determinize(tmp_lat, out_lat); fst::RmEpsilon(out_lat); } } fst::TopSort(out_lat); std::vector<int32> state_times_tmp; KALDI_ASSERT(LatticeStateTimes(*out_lat, &state_times_tmp) == end_frame - begin_frame); // Remove the acoustic scale that was previously added if (config_.acoustic_scale != 1.0) { fst::ScaleLattice(fst::AcousticLatticeScale( 1 / config_.acoustic_scale), out_lat); } } void DiscriminativeSupervisionSplitter::PrepareLattice( Lattice *lat, LatticeInfo *scores) const { // Scale the lattice to appropriate acoustic scale. It is important to // ensure this is equal to the acoustic scale used while training. This is // because, on splitting lattices, the initial and final costs are added // into the graph cost. KALDI_ASSERT(config_.acoustic_scale != 0.0); if (config_.acoustic_scale != 1.0) fst::ScaleLattice(fst::AcousticLatticeScale( config_.acoustic_scale), lat); LatticeStateTimes(*lat, &(scores->state_times)); int32 num_states = lat->NumStates(); std::vector<std::pair<int32,int32> > state_time_indexes(num_states); for (int32 s = 0; s < num_states; s++) { state_time_indexes[s] = std::make_pair(scores->state_times[s], s); } // Order the states based on the state times. This is stronger than just // topological sort. This is required by the lattice splitting code. std::sort(state_time_indexes.begin(), state_time_indexes.end()); std::vector<int32> state_order(num_states); for (int32 s = 0; s < num_states; s++) { state_order[state_time_indexes[s].second] = s; } fst::StateSort(lat, state_order); ComputeLatticeScores(*lat, scores); } void DiscriminativeSupervisionSplitter::ComputeLatticeScores(const Lattice &lat, LatticeInfo *scores) const { LatticeStateTimes(lat, &(scores->state_times)); ComputeLatticeAlphasAndBetas(lat, false, &(scores->alpha), &(scores->beta)); scores->Check(); // This check will fail if the lattice is not breadth-first search sorted } void MergeSupervision(const std::vector<const DiscriminativeSupervision*> &input, DiscriminativeSupervision *output_supervision) { KALDI_ASSERT(!input.empty()); int32 num_inputs = input.size(); if (num_inputs == 1) { *output_supervision = *(input[0]); return; } *output_supervision = *(input[num_inputs-1]); for (int32 i = num_inputs - 2; i >= 0; i--) { const DiscriminativeSupervision &src = *(input[i]); KALDI_ASSERT(src.num_sequences == 1); if (output_supervision->weight == src.weight && output_supervision->frames_per_sequence == src.frames_per_sequence) { // Combine with current output // append src.den_lat to output_supervision->den_lat. fst::Concat(src.den_lat, &output_supervision->den_lat); output_supervision->num_ali.insert( output_supervision->num_ali.begin(), src.num_ali.begin(), src.num_ali.end()); output_supervision->num_sequences++; } else { KALDI_ERR << "Mismatch weight or frames_per_sequence between inputs"; } } DiscriminativeSupervision &out_sup = *output_supervision; fst::TopSort(&(out_sup.den_lat)); out_sup.Check(); } } // namespace discriminative } // namespace kaldi |