Blame view
src/nnet3/discriminative-training.h
10.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
// nnet3/discriminative-training.h // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // Copyright 2014-2015 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET3_DISCRIMINATIVE_TRAINING_H_ #define KALDI_NNET3_DISCRIMINATIVE_TRAINING_H_ #include "base/kaldi-common.h" #include "util/common-utils.h" #include "fstext/fstext-lib.h" #include "tree/context-dep.h" #include "lat/kaldi-lattice.h" #include "matrix/kaldi-matrix.h" #include "hmm/transition-model.h" #include "nnet3/discriminative-supervision.h" #include "lat/lattice-functions.h" #include "cudamatrix/cu-matrix-lib.h" namespace kaldi { namespace discriminative { /* Options for discriminative training * * Legend: * mmi - Maximum Mutual Information * mpfe - Minimum Phone Frame Error * smbr - State Minimum Bayes Risk * */ struct DiscriminativeOptions { std::string criterion; // one of {"mmi", "mpfe", "smbr"} // If the criterion does not match the supervision // object, the derivatives may not be very accurate BaseFloat acoustic_scale; // e.g. 0.1 bool drop_frames; // for MMI, true if we ignore frames where alignment // pdf-id is not in the lattice. bool one_silence_class; // Affects MPFE and SMBR objectives BaseFloat boost; // for MMI, boosting factor (would be Boosted MMI)... e.g. 0.1. std::string silence_phones_str; // colon-separated list of integer ids of silence phones, // for MPFE and SMBR objectives // Cross-entropy regularization constant. (e.g. try 0.1). If nonzero, // the network is expected to have an output named 'output-xent', which // should have a softmax as its final nonlinearity. BaseFloat xent_regularize; // l2 regularization constant on the 'chain' output; the actual term added to // the objf will be -0.5 times this constant times the squared l2 norm. // (squared so it's additive across the dimensions). e.g. try 0.0005. BaseFloat l2_regularize; // Options for debugging discriminative training // Accumulates gradients wrt nnet outputs bool accumulate_gradients; // Accumulates nnet output bool accumulate_output; // Applicable for debugging discriminative training when accumulate_gradients // or accumulate_output is true int32 num_pdfs; DiscriminativeOptions(): criterion("smbr"), acoustic_scale(0.1), drop_frames(false), one_silence_class(false), boost(0.0), xent_regularize(0.0), l2_regularize(0.0), accumulate_gradients(false), accumulate_output(false), num_pdfs(0) { } void Register(OptionsItf *opts) { opts->Register("criterion", &criterion, "Criterion, 'mmi'|'mpfe'|'smbr', " "determines the objective function to use. Should match " "option used when we created the examples."); opts->Register("acoustic-scale", &acoustic_scale, "Weighting factor to " "apply to acoustic likelihoods."); opts->Register("drop-frames", &drop_frames, "For MMI, if true we drop frames " "with no overlap of num and den pdf-ids"); opts->Register("boost", &boost, "Boosting factor for boosted MMI (e.g. 0.1)"); opts->Register("one-silence-class", &one_silence_class, "If true, newer " "behavior which will tend to reduce insertions " "when using MPFE or SMBR objective"); opts->Register("silence-phones", &silence_phones_str, "For MPFE or SMBR objectives, colon-separated list of " "integer ids of silence phones, e.g. 1:2:3"); opts->Register("l2-regularize", &l2_regularize, "l2 regularization " "constant for 'chain' output " "of the neural net."); opts->Register("xent-regularize", &xent_regularize, "Cross-entropy " "regularization constant for sequence training. If " "nonzero, the network is expected to have an output " "named 'output-xent', which should have a softmax as " "its final nonlinearity."); opts->Register("accumulate-gradients", &accumulate_gradients, "Accumulate gradients wrt nnet output " "for debugging discriminative training"); opts->Register("accumulate-output", &accumulate_output, "Accumulate nnet output " "for debugging discriminative training"); opts->Register("num-pdfs", &num_pdfs, "Number of pdfs; " "applicable when accumulate-output or accumulate-gradients " "is true for discriminative training"); } }; struct DiscriminativeObjectiveInfo { double tot_t; // total number of frames double tot_t_weighted; // total number of frames times weight. double tot_objf; // for 'mmi', the (weighted) denominator likelihood; for // everything else, the objective function. double tot_num_count; // total count of numerator posterior double tot_den_count; // total count of denominator posterior double tot_num_objf; // for 'mmi', the (weighted) numerator likelihood; for // everything else 0 double tot_l2_term; // l2 regularization objective // l2 regularization constant on the 'chain' output; the actual term added to // the objf will be -0.5 times this constant times the squared l2 norm. // (squared so it's additive across the dimensions). e.g. try 0.0005. // Options for debugging discriminative training // Accumulates gradients wrt nnet outputs bool accumulate_gradients; // Accumulates nnet output bool accumulate_output; // Applicable for debugging discriminative training when accumulate_gradients // or accumulate_output is true int32 num_pdfs; // Used to accumulates gradients wrt nnet outputs // when accumulate_gradients is true CuVector<double> gradients; // Used to accumulates output when accumulate_output is true CuVector<double> output; // Print statistics for the criterion void Print(const std::string &criterion, bool print_avg_gradients = false, bool print_avg_output = false) const; // Print all accumulated statistics for debugging void PrintAll(const std::string &criterion) const { Print(criterion, true, true); } // Print the gradient wrt nnet output accumulated for a pdf void PrintAvgGradientForPdf(int32 pdf_id) const; // Add stats from another object void Add(const DiscriminativeObjectiveInfo &other); // Returns the objective function value for the criterion inline double TotalObjf(const std::string &criterion) const { if (criterion == "mmi") return (tot_num_objf - tot_objf); return tot_objf; } // Returns true if accumulate_gradients is true // and the gradients vector has been resized to store the // accumulated gradients inline bool AccumulateGradients() const { return accumulate_gradients && gradients.Dim() > 0; } // Returns true if accumulate_output is true // and the output vector has been resized to store the // accumulated nnet output inline bool AccumulateOutput() const { return accumulate_output && output.Dim() > 0; } // Empty constructor DiscriminativeObjectiveInfo(); // Constructor preparing to gradients or output to be accumulated DiscriminativeObjectiveInfo(int32 num_pdfs); // Constructor from config options DiscriminativeObjectiveInfo(const DiscriminativeOptions &opts); // Reset statistics void Reset(); void Configure(const DiscriminativeOptions &opts); }; /** This function does forward-backward on the numerator and denominator lattices and computes derivates wrt to the output for the specified objective function. @param [in] opts Struct containing options @param [in] tmodel Transition model @param [in] log_priors Vector of log-priors for pdfs @param [in] supervision The supervision object, containing the numerator and denominator paths. The denominator is always a lattice. The numerator is an alignment. @param [in] nnet_output The output of the neural net; dimension must equal ((supervision.num_sequences * supervision.frames_per_sequence) by tmodel.NumPdfs()). @param [out] stats Statistics accumulated during training such as the objective function and the total weight. @param [out] xent_output_deriv If non-NULL, then the xent objective derivative (which equals a posterior from the numerator forward-backward, scaled by the supervision weight) is written to here. This will be used in the cross-entropy regularization code. */ void ComputeDiscriminativeObjfAndDeriv( const DiscriminativeOptions &opts, const TransitionModel &tmodel, const CuVectorBase<BaseFloat> &log_priors, const DiscriminativeSupervision &supervision, const CuMatrixBase<BaseFloat> &nnet_output, DiscriminativeObjectiveInfo *stats, CuMatrixBase<BaseFloat> *nnet_output_deriv, CuMatrixBase<BaseFloat> *xent_output_deriv); } // namespace discriminative } // namespace kaldi #endif // KALDI_NNET3_DISCRIMINATIVE_TRAINING_H_ |