Blame view
src/nnet3/natural-gradient-online-test.cc
9.76 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
// nnet3/natural-gradient-online-test.cc // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet3/natural-gradient-online.h" #include "util/common-utils.h" namespace kaldi { namespace nnet3 { // Simple version of OnlineNaturalGradient that we use to make // sure it is behaving as advertised. class OnlineNaturalGradientSimple { public: OnlineNaturalGradientSimple(): rank_(40), num_samples_history_(2000.0), alpha_(4.0), epsilon_(1.0e-10), delta_(5.0e-04) { } void SetRank(int32 rank) { rank_ = rank; } void PreconditionDirections( CuMatrixBase<BaseFloat> *R, CuVectorBase<BaseFloat> *row_prod, BaseFloat *scale); private: BaseFloat Eta(int32 N) const; void PreconditionDirectionsCpu( MatrixBase<double> *R, VectorBase<double> *row_prod, BaseFloat *scale); void Init(const MatrixBase<double> &R0); void InitDefault(int32 D); int32 rank_; double num_samples_history_; double alpha_; double epsilon_; double delta_; // Fisher matrix defined as F_t = R_t^T diag(d_t) R_t + rho_t I. Vector<double> d_t_; Matrix<double> R_t_; double rho_t_; }; void OnlineNaturalGradientSimple::PreconditionDirections( CuMatrixBase<BaseFloat> *R, CuVectorBase<BaseFloat> *row_prod, BaseFloat *scale) { Matrix<BaseFloat> R_cpu(*R); Vector<BaseFloat> row_prod_cpu(*row_prod); Matrix<double> R_cpu_dbl(R_cpu); Vector<double> row_prod_cpu_dbl(row_prod_cpu); PreconditionDirectionsCpu(&R_cpu_dbl, &row_prod_cpu_dbl, scale); row_prod_cpu.CopyFromVec(row_prod_cpu_dbl); R_cpu.CopyFromMat(R_cpu_dbl); R->CopyFromMat(R_cpu); row_prod->CopyFromVec(row_prod_cpu); } void OnlineNaturalGradientSimple::InitDefault(int32 D) { if (rank_ >= D) { KALDI_WARN << "Rank " << rank_ << " of online preconditioner is >= dim " << D << ", setting it to " << (D - 1) << " (but this is probably still too high)"; rank_ = D - 1; } int32 R = rank_; R_t_.Resize(R, D); for (int32 r = 0; r < R; r++) { std::vector<int32> cols; for (int32 c = r; c < D; c += R) cols.push_back(c); for (int32 i = 0; i < cols.size(); i++) { int32 c = cols[i]; R_t_(r, c) = (i == 0 ? 1.1 : 1.0) / sqrt(1.1 * 1.1 + cols.size() - 1); } } d_t_.Resize(R); d_t_.Set(epsilon_); rho_t_ = epsilon_; } void OnlineNaturalGradientSimple::Init(const MatrixBase<double> &R0) { int32 D = R0.NumCols(), N = R0.NumRows(); InitDefault(D); int32 num_init_iters = 3; for (int32 i = 0; i < num_init_iters; i++) { CuMatrix<BaseFloat> R0_copy(R0); CuVector<BaseFloat> row_products(N); BaseFloat scale; PreconditionDirections(&R0_copy, &row_products, &scale); } } BaseFloat OnlineNaturalGradientSimple::Eta(int32 N) const { KALDI_ASSERT(num_samples_history_ > 0.0); BaseFloat ans = 1.0 - exp(-N / num_samples_history_); if (ans > 0.9) ans = 0.9; return ans; } void OnlineNaturalGradientSimple::PreconditionDirectionsCpu( MatrixBase<double> *X_t, VectorBase<double> *row_prod, BaseFloat *scale) { if (R_t_.NumRows() == 0) Init(*X_t); int32 R = R_t_.NumRows(), D = R_t_.NumCols(), N = X_t->NumRows(); BaseFloat eta = Eta(N); SpMatrix<double> F_t(D); // F_t =(def) R_t^T D_t R_t + \rho_t I F_t.AddToDiag(rho_t_); F_t.AddMat2Vec(1.0, R_t_, kTrans, d_t_, 1.0); // Make sure F_t is +ve definite. { KALDI_ASSERT(d_t_.Min() > 0); Vector<double> eigs(D); F_t.Eig(&eigs, NULL); KALDI_ASSERT(eigs.Min() > 0); } // S_t =(def) 1/N X_t^T X_t. SpMatrix<double> S_t(D); S_t.AddMat2(1.0 / N, *X_t, kTrans, 0.0); // T_t =(def) \eta S_t + (1-\eta) F_t SpMatrix<double> T_t(D); T_t.AddSp(eta, S_t); T_t.AddSp(1.0 - eta, F_t); // Y_t =(def) R_t T_t Matrix<double> Y_t(R, D); Y_t.AddMatSp(1.0, R_t_, kNoTrans, T_t, 0.0); // Z_t =(def) Y_t Y_t^T SpMatrix<double> Z_t(R); Z_t.AddMat2(1.0, Y_t, kNoTrans, 0.0); Matrix<double> U_t(R, R); Vector<double> c_t(R); // decompose Z_t = U_t C_t U_t^T Z_t.Eig(&c_t, &U_t); SortSvd(&c_t, &U_t); double c_t_floor = pow(rho_t_ * (1.0 - eta), 2); int32 nf; c_t.ApplyFloor(c_t_floor, &nf); if (nf > 0) { KALDI_WARN << "Floored " << nf << " elements of c_t."; } // KALDI_LOG << "c_t is " << c_t; // KALDI_LOG << "U_t is " << U_t; // KALDI_LOG << "Z_t is " << Z_t; Vector<double> sqrt_c_t(c_t); sqrt_c_t.ApplyPow(0.5); Vector<double> inv_sqrt_c_t(sqrt_c_t); inv_sqrt_c_t.InvertElements(); Matrix<double> R_t1(R, D); // R_{t+1} = C_t^{-0.5} U_t^T Y_t R_t1.AddMatMat(1.0, U_t, kTrans, Y_t, kNoTrans, 0.0); R_t1.MulRowsVec(inv_sqrt_c_t); double rho_t1 = (1.0 / (D - R)) * (eta * S_t.Trace() + (1.0 - eta) * (D * rho_t_ + d_t_.Sum()) - sqrt_c_t.Sum()); Vector<double> d_t1(sqrt_c_t); d_t1.Add(-rho_t1); double floor_val = std::max(epsilon_, delta_ * sqrt_c_t.Max()); if (rho_t1 < floor_val) { KALDI_WARN << "flooring rho_{t+1} to " << floor_val << ", was " << rho_t1; rho_t1 = floor_val; } d_t1.ApplyFloor(floor_val, &nf); if (nf > 0) { KALDI_VLOG(3) << "d_t1 was " << d_t1; KALDI_WARN << "Floored " << nf << " elements of d_{t+1}."; } // a check. if (nf == 0 && rho_t1 > floor_val) { double tr_F_t1 = D * rho_t1 + d_t1.Sum(), tr_T_t = T_t.Trace(); AssertEqual(tr_F_t1, tr_T_t); } // G_t = F_t + alpha/D tr(F_t) SpMatrix<double> G_t(F_t); G_t.AddToDiag(alpha_ / D * F_t.Trace()); SpMatrix<double> G_t_inv(G_t); G_t_inv.Invert(); double beta_t = rho_t_ + alpha_/D * F_t.Trace(); // X_hat_t = beta_t X_t G_t^{-1}. Matrix<double> X_hat_t(N, D); X_hat_t.AddMatSp(beta_t, *X_t, kNoTrans, G_t_inv, 0.0); double tr_x_x = TraceMatMat(*X_t, *X_t, kTrans), tr_Xhat_Xhat = TraceMatMat(X_hat_t, X_hat_t, kTrans); double gamma = (tr_Xhat_Xhat == 0 ? 1.0 : sqrt(tr_x_x / tr_Xhat_Xhat)); X_t->CopyFromMat(X_hat_t); row_prod->AddDiagMat2(1.0, *X_t, kNoTrans, 0.0); *scale = gamma; // Update the parameters rho_t_ = rho_t1; d_t_.CopyFromVec(d_t1); R_t_.CopyFromMat(R_t1); KALDI_VLOG(3) << "rho_t_ = " << rho_t_; KALDI_VLOG(3) << "d_t_ = " << d_t_; KALDI_VLOG(3) << "R_t_ = " << R_t_; { // check that R_t_ R_t_^T = I. SpMatrix<double> unit(R); unit.AddMat2(1.0, R_t_, kNoTrans, 0.0); if (!unit.IsUnit(1.0e-03)) { KALDI_WARN << "R is not orthogonal, reorthogonalizing."; for (int32 i = 0; i < R; i++) { SubVector<double> row(R_t_, i); for (int32 j = 0; j < i; j++) { SubVector<double> row_j(R_t_, j); row.AddVec(-VecVec(row_j, row), row_j); } row.Scale(1.0 / row.Norm(2.0)); } } unit.AddMat2(1.0, R_t_, kNoTrans, 0.0); KALDI_ASSERT(unit.IsUnit(1.0e-03)); } } void UnitTestPreconditionDirectionsOnline() { MatrixIndexT R = 1 + Rand() % 30, // rank of correction N = (2 * R) + Rand() % 30, // batch size D = R + 1 + Rand() % 20; // problem dimension. Must be > R. // Test sometimes with features that are all-zero or all-one; this will // help to make sure low-rank or zero input doesn't crash the code. bool zero = false; bool one = false; if (Rand() % 3 == 0) zero = true; //else if (Rand() % 2 == 0) one = true; CuVector<BaseFloat> row_prod1(N); BaseFloat gamma1, gamma2; BaseFloat big_eig_factor = RandInt(1, 20); big_eig_factor = big_eig_factor * big_eig_factor; Vector<BaseFloat> big_eig_vector(D); big_eig_vector.SetRandn(); big_eig_vector.Scale(big_eig_factor); OnlineNaturalGradientSimple preconditioner1; OnlineNaturalGradient preconditioner2; preconditioner1.SetRank(R); preconditioner2.SetRank(R); preconditioner2.TurnOnDebug(); int32 num_iters = 100; for (int32 iter = 0; iter < num_iters; iter++) { Matrix<BaseFloat> M_cpu(N, D); if (one) M_cpu.Set(1.0); else if (!zero) { M_cpu.SetRandn(); Vector<BaseFloat> rand_vec(N); rand_vec.SetRandn(); M_cpu.AddVecVec(1.0, rand_vec, big_eig_vector); } CuMatrix<BaseFloat> M(M_cpu); CuMatrix<BaseFloat> Mcopy1(M), Mcopy2(M); preconditioner1.PreconditionDirections(&Mcopy1, &row_prod1, &gamma1); preconditioner2.PreconditionDirections(&Mcopy2, &gamma2); BaseFloat trace1 = TraceMatMat(M, M, kTrans), trace2 = TraceMatMat(Mcopy1, Mcopy1, kTrans); AssertEqual(trace1, trace2 * gamma2 * gamma2, 1.0e-02); AssertEqual(Mcopy1, Mcopy2); AssertEqual(gamma1, gamma2, 1.0e-02); // make sure positive definite CuVector<BaseFloat> inner_prods(M.NumRows()); inner_prods.AddDiagMatMat(1.0, M, kNoTrans, Mcopy1, kTrans, 0.0); KALDI_ASSERT(inner_prods.Min() >= 0.0); } return; } } // namespace nnet3 } // namespace kaldi int main() { using namespace kaldi; using namespace kaldi::nnet3; for (int32 loop = 0; loop < 2; loop++) { #if HAVE_CUDA == 1 CuDevice::Instantiate().SetDebugStrideMode(true); if (loop == 0) CuDevice::Instantiate().SelectGpuId("no"); // -1 means no GPU else CuDevice::Instantiate().SelectGpuId("optional"); // -2 .. automatic selection #endif for (int32 i = 0; i < 5; i++) { UnitTestPreconditionDirectionsOnline(); } } } |