Blame view

src/nnet3/natural-gradient-online-test.cc 9.76 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
  // nnet3/natural-gradient-online-test.cc
  
  // Copyright 2012-2015  Johns Hopkins University (author:  Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "nnet3/natural-gradient-online.h"
  #include "util/common-utils.h"
  
  namespace kaldi {
  namespace nnet3 {
  
  // Simple version of OnlineNaturalGradient that we use to make
  // sure it is behaving as advertised.
  class OnlineNaturalGradientSimple {
   public:
    OnlineNaturalGradientSimple(): rank_(40), num_samples_history_(2000.0), alpha_(4.0),
                                  epsilon_(1.0e-10), delta_(5.0e-04) { }
  
    void SetRank(int32 rank) { rank_ = rank; }
  
    void PreconditionDirections(
        CuMatrixBase<BaseFloat> *R,
        CuVectorBase<BaseFloat> *row_prod,
        BaseFloat *scale);
  
  
   private:
    BaseFloat Eta(int32 N) const;
  
    void PreconditionDirectionsCpu(
        MatrixBase<double> *R,
        VectorBase<double> *row_prod,
        BaseFloat *scale);
  
  
    void Init(const MatrixBase<double> &R0);
  
    void InitDefault(int32 D);
  
    int32 rank_;
    double num_samples_history_;
    double alpha_;
    double epsilon_;
    double delta_;
  
    // Fisher matrix defined as F_t = R_t^T diag(d_t) R_t + rho_t I.
    Vector<double> d_t_;
    Matrix<double> R_t_;
    double rho_t_;
  };
  
  
  void OnlineNaturalGradientSimple::PreconditionDirections(
        CuMatrixBase<BaseFloat> *R,
        CuVectorBase<BaseFloat> *row_prod,
        BaseFloat *scale) {
    Matrix<BaseFloat> R_cpu(*R);
    Vector<BaseFloat> row_prod_cpu(*row_prod);
    Matrix<double> R_cpu_dbl(R_cpu);
    Vector<double> row_prod_cpu_dbl(row_prod_cpu);
    PreconditionDirectionsCpu(&R_cpu_dbl,
                              &row_prod_cpu_dbl,
                              scale);
    row_prod_cpu.CopyFromVec(row_prod_cpu_dbl);
    R_cpu.CopyFromMat(R_cpu_dbl);
    R->CopyFromMat(R_cpu);
    row_prod->CopyFromVec(row_prod_cpu);
  }
  
  void OnlineNaturalGradientSimple::InitDefault(int32 D) {
    if (rank_ >= D) {
      KALDI_WARN << "Rank " << rank_ << " of online preconditioner is >= dim " << D
                 << ", setting it to "
                 << (D - 1) << " (but this is probably still too high)";
      rank_ = D - 1;
    }
    int32 R = rank_;
    R_t_.Resize(R, D);
    for (int32 r = 0; r < R; r++) {
      std::vector<int32> cols;
      for (int32 c = r; c < D; c += R)
        cols.push_back(c);
      for (int32 i = 0; i < cols.size(); i++) {
        int32 c = cols[i];
        R_t_(r, c) = (i == 0 ? 1.1 : 1.0) /
            sqrt(1.1 * 1.1 + cols.size() - 1);
      }
    }
    d_t_.Resize(R);
    d_t_.Set(epsilon_);
    rho_t_ = epsilon_;
  }
  
  void OnlineNaturalGradientSimple::Init(const MatrixBase<double> &R0) {
    int32 D = R0.NumCols(), N = R0.NumRows();
    InitDefault(D);
    int32 num_init_iters = 3;
    for (int32 i = 0; i < num_init_iters; i++) {
      CuMatrix<BaseFloat> R0_copy(R0);
      CuVector<BaseFloat> row_products(N);
      BaseFloat scale;
      PreconditionDirections(&R0_copy, &row_products, &scale);
    }
  }
  
  BaseFloat OnlineNaturalGradientSimple::Eta(int32 N) const {
    KALDI_ASSERT(num_samples_history_ > 0.0);
    BaseFloat ans = 1.0 - exp(-N / num_samples_history_);
    if (ans > 0.9) ans = 0.9;
    return ans;
  }
  
  
  void OnlineNaturalGradientSimple::PreconditionDirectionsCpu(
      MatrixBase<double> *X_t,
      VectorBase<double> *row_prod,
      BaseFloat *scale) {
    if (R_t_.NumRows() == 0)
      Init(*X_t);
    int32 R = R_t_.NumRows(), D = R_t_.NumCols(), N = X_t->NumRows();
    BaseFloat eta = Eta(N);
  
    SpMatrix<double> F_t(D);
    // F_t =(def) R_t^T D_t R_t + \rho_t I
    F_t.AddToDiag(rho_t_);
    F_t.AddMat2Vec(1.0, R_t_, kTrans, d_t_, 1.0);
  
    // Make sure F_t is +ve definite.
    {
      KALDI_ASSERT(d_t_.Min() > 0);
      Vector<double> eigs(D);
      F_t.Eig(&eigs, NULL);
      KALDI_ASSERT(eigs.Min() > 0);
    }
  
    // S_t =(def) 1/N X_t^T X_t.
    SpMatrix<double> S_t(D);
    S_t.AddMat2(1.0 / N, *X_t, kTrans, 0.0);
  
    // T_t =(def) \eta S_t + (1-\eta) F_t
    SpMatrix<double> T_t(D);
    T_t.AddSp(eta, S_t);
    T_t.AddSp(1.0 - eta, F_t);
  
    // Y_t =(def) R_t T_t
    Matrix<double> Y_t(R, D);
    Y_t.AddMatSp(1.0, R_t_, kNoTrans, T_t, 0.0);
  
    // Z_t =(def) Y_t Y_t^T
    SpMatrix<double> Z_t(R);
    Z_t.AddMat2(1.0, Y_t, kNoTrans, 0.0);
  
    Matrix<double> U_t(R, R);
    Vector<double> c_t(R);
    // decompose Z_t = U_t C_t U_t^T
    Z_t.Eig(&c_t, &U_t);
    SortSvd(&c_t, &U_t);
    double c_t_floor = pow(rho_t_ * (1.0 - eta), 2);
    int32 nf;
    c_t.ApplyFloor(c_t_floor, &nf);
    if (nf > 0) {
      KALDI_WARN << "Floored " << nf << " elements of c_t.";
    }
    // KALDI_LOG << "c_t is " << c_t;
    // KALDI_LOG << "U_t is " << U_t;
    // KALDI_LOG << "Z_t is " << Z_t;
  
    Vector<double> sqrt_c_t(c_t);
    sqrt_c_t.ApplyPow(0.5);
    Vector<double> inv_sqrt_c_t(sqrt_c_t);
    inv_sqrt_c_t.InvertElements();
    Matrix<double> R_t1(R, D);
    // R_{t+1} = C_t^{-0.5} U_t^T Y_t
    R_t1.AddMatMat(1.0, U_t, kTrans, Y_t, kNoTrans, 0.0);
    R_t1.MulRowsVec(inv_sqrt_c_t);
  
    double rho_t1 = (1.0 / (D - R)) *
        (eta * S_t.Trace() + (1.0 - eta) * (D * rho_t_ + d_t_.Sum()) - sqrt_c_t.Sum());
  
    Vector<double> d_t1(sqrt_c_t);
    d_t1.Add(-rho_t1);
  
    double floor_val = std::max(epsilon_, delta_ * sqrt_c_t.Max());
    if (rho_t1 < floor_val) {
      KALDI_WARN << "flooring rho_{t+1} to " << floor_val << ", was " << rho_t1;
      rho_t1 = floor_val;
    }
    d_t1.ApplyFloor(floor_val, &nf);
    if (nf > 0) {
      KALDI_VLOG(3) << "d_t1 was " << d_t1;
      KALDI_WARN << "Floored " << nf << " elements of d_{t+1}.";
    }
    // a check.
    if (nf == 0 && rho_t1 > floor_val) {
      double tr_F_t1 = D * rho_t1 + d_t1.Sum(), tr_T_t = T_t.Trace();
      AssertEqual(tr_F_t1, tr_T_t);
    }
  
    // G_t = F_t + alpha/D tr(F_t)
    SpMatrix<double> G_t(F_t);
    G_t.AddToDiag(alpha_ / D * F_t.Trace());
    SpMatrix<double> G_t_inv(G_t);
    G_t_inv.Invert();
  
    double beta_t = rho_t_ + alpha_/D * F_t.Trace();
    // X_hat_t = beta_t X_t G_t^{-1}.
    Matrix<double> X_hat_t(N, D);
    X_hat_t.AddMatSp(beta_t, *X_t, kNoTrans, G_t_inv, 0.0);
  
    double tr_x_x = TraceMatMat(*X_t, *X_t, kTrans),
        tr_Xhat_Xhat = TraceMatMat(X_hat_t, X_hat_t, kTrans);
    double gamma = (tr_Xhat_Xhat == 0 ? 1.0 : sqrt(tr_x_x / tr_Xhat_Xhat));
  
    X_t->CopyFromMat(X_hat_t);
    row_prod->AddDiagMat2(1.0, *X_t, kNoTrans, 0.0);
    *scale = gamma;
  
    // Update the parameters
    rho_t_ = rho_t1;
    d_t_.CopyFromVec(d_t1);
    R_t_.CopyFromMat(R_t1);
  
    KALDI_VLOG(3) << "rho_t_ = " << rho_t_;
    KALDI_VLOG(3) << "d_t_ = " << d_t_;
    KALDI_VLOG(3) << "R_t_ = " << R_t_;
  
  
    { // check that R_t_ R_t_^T = I.
      SpMatrix<double> unit(R);
      unit.AddMat2(1.0, R_t_, kNoTrans, 0.0);
      if (!unit.IsUnit(1.0e-03)) {
        KALDI_WARN  << "R is not orthogonal, reorthogonalizing.";
        for (int32 i = 0; i < R; i++) {
          SubVector<double> row(R_t_, i);
          for (int32 j = 0; j < i; j++) {
            SubVector<double> row_j(R_t_, j);
            row.AddVec(-VecVec(row_j, row), row_j);
          }
          row.Scale(1.0 / row.Norm(2.0));
        }
      }
      unit.AddMat2(1.0, R_t_, kNoTrans, 0.0);
      KALDI_ASSERT(unit.IsUnit(1.0e-03));
    }
  }
  
  
  void UnitTestPreconditionDirectionsOnline() {
    MatrixIndexT R = 1 + Rand() % 30,  // rank of correction
        N = (2 * R) + Rand() % 30,  // batch size
        D = R + 1 + Rand() % 20; // problem dimension.  Must be > R.
  
    // Test sometimes with features that are all-zero or all-one; this will
    // help to make sure low-rank or zero input doesn't crash the code.
    bool zero = false;
    bool one = false;
    if (Rand() % 3 == 0) zero = true;
    //else if (Rand() % 2 == 0) one = true;
  
    CuVector<BaseFloat> row_prod1(N);
    BaseFloat gamma1, gamma2;
    BaseFloat big_eig_factor = RandInt(1, 20);
    big_eig_factor = big_eig_factor * big_eig_factor;
    Vector<BaseFloat> big_eig_vector(D);
    big_eig_vector.SetRandn();
    big_eig_vector.Scale(big_eig_factor);
  
    OnlineNaturalGradientSimple preconditioner1;
    OnlineNaturalGradient preconditioner2;
    preconditioner1.SetRank(R);
    preconditioner2.SetRank(R);
    preconditioner2.TurnOnDebug();
  
    int32 num_iters = 100;
    for (int32 iter = 0; iter < num_iters; iter++) {
      Matrix<BaseFloat> M_cpu(N, D);
      if (one) M_cpu.Set(1.0);
      else if (!zero) {
        M_cpu.SetRandn();
        Vector<BaseFloat> rand_vec(N);
        rand_vec.SetRandn();
        M_cpu.AddVecVec(1.0, rand_vec, big_eig_vector);
      }
      CuMatrix<BaseFloat> M(M_cpu);
  
      CuMatrix<BaseFloat> Mcopy1(M), Mcopy2(M);
  
      preconditioner1.PreconditionDirections(&Mcopy1, &row_prod1, &gamma1);
  
      preconditioner2.PreconditionDirections(&Mcopy2, &gamma2);
  
      BaseFloat trace1 = TraceMatMat(M, M, kTrans),
          trace2 = TraceMatMat(Mcopy1, Mcopy1, kTrans);
      AssertEqual(trace1, trace2 * gamma2 * gamma2, 1.0e-02);
  
      AssertEqual(Mcopy1, Mcopy2);
      AssertEqual(gamma1, gamma2, 1.0e-02);
  
      // make sure positive definite
      CuVector<BaseFloat> inner_prods(M.NumRows());
      inner_prods.AddDiagMatMat(1.0, M, kNoTrans, Mcopy1, kTrans, 0.0);
      KALDI_ASSERT(inner_prods.Min() >= 0.0);
    }
    return;
  }
  
  
  } // namespace nnet3
  } // namespace kaldi
  
  
  int main() {
    using namespace kaldi;
    using namespace kaldi::nnet3;
    for (int32 loop = 0; loop < 2; loop++) {
  #if HAVE_CUDA == 1
      CuDevice::Instantiate().SetDebugStrideMode(true);
      if (loop == 0)
        CuDevice::Instantiate().SelectGpuId("no"); // -1 means no GPU
      else
        CuDevice::Instantiate().SelectGpuId("optional"); // -2 .. automatic selection
  #endif
      for (int32 i = 0; i < 5; i++) {
        UnitTestPreconditionDirectionsOnline();
      }
    }
  }