Blame view
src/nnet3/nnet-chain-training.cc
11.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
// nnet3/nnet-chain-training.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // 2016 Xiaohui Zhang // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet3/nnet-chain-training.h" #include "nnet3/nnet-utils.h" namespace kaldi { namespace nnet3 { NnetChainTrainer::NnetChainTrainer(const NnetChainTrainingOptions &opts, const fst::StdVectorFst &den_fst, Nnet *nnet): opts_(opts), den_graph_(den_fst, nnet->OutputDim("output")), nnet_(nnet), compiler_(*nnet, opts_.nnet_config.optimize_config, opts_.nnet_config.compiler_config), num_minibatches_processed_(0), max_change_stats_(*nnet), srand_seed_(RandInt(0, 100000)) { if (opts.nnet_config.zero_component_stats) ZeroComponentStats(nnet); KALDI_ASSERT(opts.nnet_config.momentum >= 0.0 && opts.nnet_config.max_param_change >= 0.0 && opts.nnet_config.backstitch_training_interval > 0); delta_nnet_ = nnet_->Copy(); ScaleNnet(0.0, delta_nnet_); if (opts.nnet_config.read_cache != "") { bool binary; try { Input ki(opts.nnet_config.read_cache, &binary); compiler_.ReadCache(ki.Stream(), binary); KALDI_LOG << "Read computation cache from " << opts.nnet_config.read_cache; } catch (...) { KALDI_WARN << "Could not open cached computation. " "Probably this is the first training iteration."; } } } void NnetChainTrainer::Train(const NnetChainExample &chain_eg) { bool need_model_derivative = true; const NnetTrainerOptions &nnet_config = opts_.nnet_config; bool use_xent_regularization = (opts_.chain_config.xent_regularize != 0.0); ComputationRequest request; GetChainComputationRequest(*nnet_, chain_eg, need_model_derivative, nnet_config.store_component_stats, use_xent_regularization, need_model_derivative, &request); std::shared_ptr<const NnetComputation> computation = compiler_.Compile(request); if (nnet_config.backstitch_training_scale > 0.0 && num_minibatches_processed_ % nnet_config.backstitch_training_interval == srand_seed_ % nnet_config.backstitch_training_interval) { // backstitch training is incompatible with momentum > 0 KALDI_ASSERT(nnet_config.momentum == 0.0); FreezeNaturalGradient(true, delta_nnet_); bool is_backstitch_step1 = true; srand(srand_seed_ + num_minibatches_processed_); ResetGenerators(nnet_); TrainInternalBackstitch(chain_eg, *computation, is_backstitch_step1); FreezeNaturalGradient(false, delta_nnet_); // un-freeze natural gradient is_backstitch_step1 = false; srand(srand_seed_ + num_minibatches_processed_); ResetGenerators(nnet_); TrainInternalBackstitch(chain_eg, *computation, is_backstitch_step1); } else { // conventional training TrainInternal(chain_eg, *computation); } if (num_minibatches_processed_ == 0) { ConsolidateMemory(nnet_); ConsolidateMemory(delta_nnet_); } num_minibatches_processed_++; } void NnetChainTrainer::TrainInternal(const NnetChainExample &eg, const NnetComputation &computation) { const NnetTrainerOptions &nnet_config = opts_.nnet_config; // note: because we give the 1st arg (nnet_) as a pointer to the // constructor of 'computer', it will use that copy of the nnet to // store stats. NnetComputer computer(nnet_config.compute_config, computation, nnet_, delta_nnet_); // give the inputs to the computer object. computer.AcceptInputs(*nnet_, eg.inputs); computer.Run(); this->ProcessOutputs(false, eg, &computer); computer.Run(); // If relevant, add in the part of the gradient that comes from // parameter-level L2 regularization. ApplyL2Regularization(*nnet_, GetNumNvalues(eg.inputs, false) * nnet_config.l2_regularize_factor, delta_nnet_); // Updates the parameters of nnet bool success = UpdateNnetWithMaxChange( *delta_nnet_, nnet_config.max_param_change, 1.0, 1.0 - nnet_config.momentum, nnet_, &max_change_stats_); // Scale down the batchnorm stats (keeps them fresh... this affects what // happens when we use the model with batchnorm test-mode set). ScaleBatchnormStats(nnet_config.batchnorm_stats_scale, nnet_); // The following will only do something if we have a LinearComponent // or AffineComponent with orthonormal-constraint set to a nonzero value. ConstrainOrthonormal(nnet_); // Scale delta_nnet if (success) ScaleNnet(nnet_config.momentum, delta_nnet_); else ScaleNnet(0.0, delta_nnet_); } void NnetChainTrainer::TrainInternalBackstitch(const NnetChainExample &eg, const NnetComputation &computation, bool is_backstitch_step1) { const NnetTrainerOptions &nnet_config = opts_.nnet_config; // note: because we give the 1st arg (nnet_) as a pointer to the // constructor of 'computer', it will use that copy of the nnet to // store stats. NnetComputer computer(nnet_config.compute_config, computation, nnet_, delta_nnet_); // give the inputs to the computer object. computer.AcceptInputs(*nnet_, eg.inputs); computer.Run(); bool is_backstitch_step2 = !is_backstitch_step1; this->ProcessOutputs(is_backstitch_step2, eg, &computer); computer.Run(); BaseFloat max_change_scale, scale_adding; if (is_backstitch_step1) { // max-change is scaled by backstitch_training_scale; // delta_nnet is scaled by -backstitch_training_scale when added to nnet; max_change_scale = nnet_config.backstitch_training_scale; scale_adding = -nnet_config.backstitch_training_scale; } else { // max-change is scaled by 1 + backstitch_training_scale; // delta_nnet is scaled by 1 + backstitch_training_scale when added to nnet; max_change_scale = 1.0 + nnet_config.backstitch_training_scale; scale_adding = 1.0 + nnet_config.backstitch_training_scale; // If relevant, add in the part of the gradient that comes from L2 // regularization. It may not be optimally inefficient to do it on both // passes of the backstitch, like we do here, but it probably minimizes // any harmful interactions with the max-change. ApplyL2Regularization(*nnet_, 1.0 / scale_adding * GetNumNvalues(eg.inputs, false) * nnet_config.l2_regularize_factor, delta_nnet_); } // Updates the parameters of nnet UpdateNnetWithMaxChange( *delta_nnet_, nnet_config.max_param_change, max_change_scale, scale_adding, nnet_, &max_change_stats_); if (is_backstitch_step1) { // The following will only do something if we have a LinearComponent or // AffineComponent with orthonormal-constraint set to a nonzero value. We // choose to do this only on the 1st backstitch step, for efficiency. ConstrainOrthonormal(nnet_); } if (!is_backstitch_step1) { // Scale down the batchnorm stats (keeps them fresh... this affects what // happens when we use the model with batchnorm test-mode set). Do this // after backstitch step 2 so that the stats are scaled down before we start // the next minibatch. ScaleBatchnormStats(nnet_config.batchnorm_stats_scale, nnet_); } ScaleNnet(0.0, delta_nnet_); } void NnetChainTrainer::ProcessOutputs(bool is_backstitch_step2, const NnetChainExample &eg, NnetComputer *computer) { // normally the eg will have just one output named 'output', but // we don't assume this. // In backstitch training, the output-name with the "_backstitch" suffix is // the one computed after the first, backward step of backstitch. const std::string suffix = (is_backstitch_step2 ? "_backstitch" : ""); std::vector<NnetChainSupervision>::const_iterator iter = eg.outputs.begin(), end = eg.outputs.end(); for (; iter != end; ++iter) { const NnetChainSupervision &sup = *iter; int32 node_index = nnet_->GetNodeIndex(sup.name); if (node_index < 0 || !nnet_->IsOutputNode(node_index)) KALDI_ERR << "Network has no output named " << sup.name; const CuMatrixBase<BaseFloat> &nnet_output = computer->GetOutput(sup.name); CuMatrix<BaseFloat> nnet_output_deriv(nnet_output.NumRows(), nnet_output.NumCols(), kUndefined); bool use_xent = (opts_.chain_config.xent_regularize != 0.0); std::string xent_name = sup.name + "-xent"; // typically "output-xent". CuMatrix<BaseFloat> xent_deriv; BaseFloat tot_objf, tot_l2_term, tot_weight; ComputeChainObjfAndDeriv(opts_.chain_config, den_graph_, sup.supervision, nnet_output, &tot_objf, &tot_l2_term, &tot_weight, &nnet_output_deriv, (use_xent ? &xent_deriv : NULL)); if (use_xent) { // this block computes the cross-entropy objective. const CuMatrixBase<BaseFloat> &xent_output = computer->GetOutput( xent_name); // at this point, xent_deriv is posteriors derived from the numerator // computation. note, xent_objf has a factor of '.supervision.weight' BaseFloat xent_objf = TraceMatMat(xent_output, xent_deriv, kTrans); objf_info_[xent_name + suffix].UpdateStats(xent_name + suffix, opts_.nnet_config.print_interval, num_minibatches_processed_, tot_weight, xent_objf); } if (opts_.apply_deriv_weights && sup.deriv_weights.Dim() != 0) { CuVector<BaseFloat> cu_deriv_weights(sup.deriv_weights); nnet_output_deriv.MulRowsVec(cu_deriv_weights); if (use_xent) xent_deriv.MulRowsVec(cu_deriv_weights); } computer->AcceptInput(sup.name, &nnet_output_deriv); objf_info_[sup.name + suffix].UpdateStats(sup.name + suffix, opts_.nnet_config.print_interval, num_minibatches_processed_, tot_weight, tot_objf, tot_l2_term); if (use_xent) { xent_deriv.Scale(opts_.chain_config.xent_regularize); computer->AcceptInput(xent_name, &xent_deriv); } } } bool NnetChainTrainer::PrintTotalStats() const { unordered_map<std::string, ObjectiveFunctionInfo, StringHasher>::const_iterator iter = objf_info_.begin(), end = objf_info_.end(); bool ans = false; for (; iter != end; ++iter) { const std::string &name = iter->first; const ObjectiveFunctionInfo &info = iter->second; ans = info.PrintTotalStats(name) || ans; } max_change_stats_.Print(*nnet_); return ans; } NnetChainTrainer::~NnetChainTrainer() { if (opts_.nnet_config.write_cache != "") { Output ko(opts_.nnet_config.write_cache, opts_.nnet_config.binary_write_cache); compiler_.WriteCache(ko.Stream(), opts_.nnet_config.binary_write_cache); KALDI_LOG << "Wrote computation cache to " << opts_.nnet_config.write_cache; } delete delta_nnet_; } } // namespace nnet3 } // namespace kaldi |