Blame view
src/nnet3/nnet-chain-training.h
3.71 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
// nnet3/nnet-chain-training.h // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET3_NNET_CHAIN_TRAINING_H_ #define KALDI_NNET3_NNET_CHAIN_TRAINING_H_ #include "nnet3/nnet-example.h" #include "nnet3/nnet-computation.h" #include "nnet3/nnet-compute.h" #include "nnet3/nnet-optimize.h" #include "nnet3/nnet-chain-example.h" #include "nnet3/nnet-training.h" #include "chain/chain-training.h" #include "chain/chain-den-graph.h" namespace kaldi { namespace nnet3 { struct NnetChainTrainingOptions { NnetTrainerOptions nnet_config; chain::ChainTrainingOptions chain_config; bool apply_deriv_weights; NnetChainTrainingOptions(): apply_deriv_weights(true) { } void Register(OptionsItf *opts) { nnet_config.Register(opts); chain_config.Register(opts); opts->Register("apply-deriv-weights", &apply_deriv_weights, "If true, apply the per-frame derivative weights stored with " "the example"); } }; /** This class is for single-threaded training of neural nets using the 'chain' model. */ class NnetChainTrainer { public: NnetChainTrainer(const NnetChainTrainingOptions &config, const fst::StdVectorFst &den_fst, Nnet *nnet); // train on one minibatch. void Train(const NnetChainExample &eg); // Prints out the final stats, and return true if there was a nonzero count. bool PrintTotalStats() const; ~NnetChainTrainer(); private: // The internal function for doing one step of conventional SGD training. void TrainInternal(const NnetChainExample &eg, const NnetComputation &computation); // The internal function for doing one step of backstitch training. Depending // on whether is_backstitch_step1 is true, It could be either the first // (backward) step, or the second (forward) step of backstitch. void TrainInternalBackstitch(const NnetChainExample &eg, const NnetComputation &computation, bool is_backstitch_step1); void ProcessOutputs(bool is_backstitch_step2, const NnetChainExample &eg, NnetComputer *computer); const NnetChainTrainingOptions opts_; chain::DenominatorGraph den_graph_; Nnet *nnet_; Nnet *delta_nnet_; // stores the change to the parameters on each training // iteration. CachingOptimizingCompiler compiler_; // This code supports multiple output layers, even though in the // normal case there will be just one output layer named "output". // So we store the objective functions per output layer. int32 num_minibatches_processed_; // stats for max-change. MaxChangeStats max_change_stats_; unordered_map<std::string, ObjectiveFunctionInfo, StringHasher> objf_info_; // This value is used in backstitch training when we need to ensure // consistent dropout masks. It's set to a value derived from rand() // when the class is initialized. int32 srand_seed_; }; } // namespace nnet3 } // namespace kaldi #endif // KALDI_NNET3_NNET_CHAIN_TRAINING_H_ |