Blame view
src/nnet3/nnet-compile-utils-test.cc
14.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
// nnet3/nnet-compile-utils-test.cc // Copyright 2015 Johns Hopkins University (author: Vijayaditya Peddinti) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "util/common-utils.h" #include "nnet3/nnet-compile-utils.h" namespace kaldi { namespace nnet3 { struct ComparePair : public std::unary_function<std::pair<int32, int32>, bool> { explicit ComparePair(const std::pair<int32, int32> &correct_pair): correct_pair_(correct_pair) {} bool operator() (std::pair<int32, int32> const &arg) { return (arg.first == correct_pair_.first) && (arg.second == correct_pair_.second); } std::pair<int32, int32> correct_pair_; }; struct PairIsEqualComparator : public std::unary_function<std::pair<int32, int32>, bool> { explicit PairIsEqualComparator(const std::pair<int32, int32> pair): pair_(pair) {} bool operator() (std::pair<int32, int32> const &arg) { if (pair_.first == arg.first) return pair_.second == arg.second; return false; } std::pair<int32, int32> pair_; }; void PrintVectorVectorPair( std::vector<std::vector<std::pair<int32, int32> > > vec_vec_pair) { std::ostringstream ostream; for (int32 i = 0; i < vec_vec_pair.size(); i++) { for (int32 j = 0; j < vec_vec_pair[i].size(); j++) { ostream << "(" << vec_vec_pair[i][j].first << "," << vec_vec_pair[i][j].second << ") "; } ostream << std::endl; } KALDI_LOG << ostream.str(); } // Function to check SplitLocationsBackward() method // checks if the submat_lists and split_lists have the same non-dummy elements // checks if the submat_lists are split into same first_element lists wherever // possible // checks if the split_lists satisfy either "unique contiguous segments" // property or unique pairs property (see SplitLocationsBackward in // nnet-compile-utils.h for more details) void UnitTestSplitLocationsBackward(bool verbose) { int32 minibatch_size = Rand() % 1024 + 100; int32 num_submat_indexes = Rand() % 10 + 1; int32 max_submat_list_size = Rand() % 10 + 1; int32 min_num_kaddrows = Rand() % 2; // minimum number of kAddRows compatible // lists expected in the final split lists. This value will be used to // create input submat_lists so that this is guaranteed max_submat_list_size = min_num_kaddrows + max_submat_list_size; std::vector<std::pair<int32, int32> > all_pairs; all_pairs.reserve(minibatch_size * max_submat_list_size); std::vector<std::vector<std::pair<int32, int32> > > submat_lists(minibatch_size), split_lists; std::vector<int32> submat_indexes(num_submat_indexes); for (int32 i = 0; i < num_submat_indexes; i++) { submat_indexes[i] = Rand(); } // generating submat_lists int32 max_generated_submat_list_size = 0; for (int32 i = 0; i < minibatch_size; i++) { int32 num_locations = Rand() % max_submat_list_size + 1; max_generated_submat_list_size = max_generated_submat_list_size < num_locations ? num_locations : max_generated_submat_list_size; submat_lists[i].reserve(num_locations); for (int32 j = 0; j < num_locations; j++) { if (j <= min_num_kaddrows && j < num_submat_indexes) // since we need min_num_kaddrows in the split_lists we ensure that // we add a pair with the same first element in all the submat_lists submat_lists[i].push_back(std::make_pair(submat_indexes[j], Rand() % minibatch_size)); submat_lists[i].push_back( std::make_pair(submat_indexes[Rand() % num_submat_indexes], Rand() % minibatch_size)); } all_pairs.insert(all_pairs.end(), submat_lists[i].begin(), submat_lists[i].end()); } SplitLocationsBackward(submat_lists, &split_lists); // Checking split_lists has all the necessary properties for (int32 i = 0; i < split_lists.size(); i++) { int32 first_value; std::vector<int32> second_values; if (ConvertToIndexes(split_lists[i], &first_value, &second_values)) { // checking for contiguity and uniqueness of .second elements std::vector<int32> occurred_values; int32 prev_value = -10; // using a negative value as all indices are > 0 for (int32 j = 0; j < second_values.size(); j++) { if (second_values[j] == -1) continue; if (second_values[j] != prev_value) { std::vector<int32>::iterator iter = std::find(occurred_values.begin(), occurred_values.end(), second_values[j]); KALDI_ASSERT(iter == occurred_values.end()); } } } else { std::vector<std::pair<int32, int32> > list_of_pairs; // checking for uniques of elements in the list for (int32 j = 0; j < split_lists[i].size(); j++) { if (split_lists[i][j].first == -1) continue; std::vector<std::pair<int32, int32> >::const_iterator iter = std::find_if(list_of_pairs.begin(), list_of_pairs.end(), PairIsEqualComparator(split_lists[i][j])); KALDI_ASSERT(iter == list_of_pairs.end()); list_of_pairs.push_back(split_lists[i][j]); } } } if (verbose) { KALDI_LOG << "submat_list"; PrintVectorVectorPair(submat_lists); KALDI_LOG << "split_lists"; PrintVectorVectorPair(split_lists); KALDI_LOG << "==========================="; } int32 num_kaddrows_in_output = 0; int32 first_value; std::vector<int32> second_values; // ensure that elements in submat_lists are also present // in split_lists for (int32 i = 0 ; i < split_lists.size(); i++) { second_values.clear(); if (ConvertToIndexes(split_lists[i], &first_value, &second_values)) { // Checking if ConvertToIndexes did a proper conversion of the indexes KALDI_ASSERT(second_values.size() == split_lists[i].size()); for (int32 j = 0; j < second_values.size(); j++) { if (split_lists[i][j].first != -1) KALDI_ASSERT((split_lists[i][j].first == first_value) && (split_lists[i][j].second == second_values[j])); } num_kaddrows_in_output++; } for (int32 j = 0; j < split_lists[i].size(); j++) { if (split_lists[i][j].first == -1) continue; std::vector<std::pair<int32, int32> >::iterator iter = std::find_if(all_pairs.begin(), all_pairs.end(), ComparePair(split_lists[i][j])); KALDI_ASSERT(iter != all_pairs.end()); all_pairs.erase(iter); } } KALDI_ASSERT(all_pairs.size() == 0); // ensure that there are at least as many kAddRows compatible split_lists as // specified KALDI_ASSERT(num_kaddrows_in_output >= min_num_kaddrows); } void UnitTestHasContiguousProperty() { for (int32 k = 0; k < 10; k++) { int32 size = RandInt(0, 5); std::vector<int32> indexes(size); for (int32 i = 0; i < size; i++) indexes[i] = RandInt(-1, 4); std::vector<std::pair<int32, int32> > reverse_indexes; bool ans = HasContiguousProperty(indexes, &reverse_indexes); if (!ans) { // doesn't have contiguous propety. KALDI_LOG << "no."; bool found_example = false; for (int32 i = 0; i < size; i++) { if (indexes[i] != -1) { bool found_not_same = false; for (int32 j = i + 1; j < size; j++) { if (indexes[j] != indexes[i]) found_not_same = true; else if (found_not_same) found_example = true; // found something like x y x. } } } KALDI_ASSERT(found_example); } else { KALDI_LOG << "yes."; for (int32 i = 0; i < reverse_indexes.size(); i++) { for (int32 j = reverse_indexes[i].first; j < reverse_indexes[i].second; j++) { KALDI_ASSERT(indexes[j] == i); indexes[j] = -1; } } for (int32 i = 0; i < size; i++) // make sure all indexes covered. KALDI_ASSERT(indexes[i] == -1); } } } void UnitTestEnsureContiguousProperty() { for (int32 k = 0; k < 10; k++) { int32 size = RandInt(0, 5); std::vector<int32> indexes(size); for (int32 i = 0; i < size; i++) indexes[i] = RandInt(-1, 4); std::vector<std::pair<int32, int32> > reverse_indexes; bool ans = HasContiguousProperty(indexes, &reverse_indexes); if (ans) { // has contiguous property -> EnsureContiguousProperty should do // nothing. std::vector<std::vector<int32> > indexes_split; EnsureContiguousProperty(indexes, &indexes_split); if (indexes.size() == 0 || *std::max_element(indexes.begin(), indexes.end()) == -1) { KALDI_ASSERT(indexes_split.size() == 0); } else { KALDI_ASSERT(indexes_split.size() == 1 && indexes_split[0] == indexes); } } else { std::vector<std::vector<int32> > indexes_split; EnsureContiguousProperty(indexes, &indexes_split); KALDI_ASSERT(indexes_split.size() > 1); for (int32 i = 0; i < indexes.size(); i++) { int32 this_val = indexes[i]; bool found = (this_val == -1); // not looking for anything if // this_val is -1. for (int32 j = 0; j < indexes_split.size(); j++) { if (found) { KALDI_ASSERT(indexes_split[j][i] == -1); } else { if (indexes_split[j][i] == this_val) { found = true; } else { KALDI_ASSERT(indexes_split[j][i] == -1); } } } KALDI_ASSERT(found); for (int32 j = 0; j < indexes_split.size(); j++) { KALDI_ASSERT(indexes_split[j].size() == indexes.size() && HasContiguousProperty(indexes_split[j], &reverse_indexes)); } } } } } // Function to check SplitLocations() method // checks if the submat_lists and split_lists have the same non-dummy elements // checks if the submat_lists are split into same first_element lists wherever // possible void UnitTestSplitLocations(bool verbose) { int32 minibatch_size = Rand() % 1024 + 100; int32 num_submat_indexes = Rand() % 10 + 1; int32 max_submat_list_size = Rand() % 10 + 1; int32 min_num_kaddrows = Rand() % 2; // minimum number of kAddRows compatible // lists expected in the final split lists. This value will be used to // create input submat_lists so that this is guaranteed max_submat_list_size = min_num_kaddrows + max_submat_list_size; std::vector<std::pair<int32, int32> > all_pairs; all_pairs.reserve(minibatch_size * max_submat_list_size); std::vector<std::vector<std::pair<int32, int32> > > submat_lists(minibatch_size), split_lists; std::vector<int32> submat_indexes(num_submat_indexes); for (int32 i = 0; i < num_submat_indexes; i++) { submat_indexes[i] = Rand(); } // generating submat_lists int32 max_generated_submat_list_size = 0; for (int32 i = 0; i < minibatch_size; i++) { int32 num_locations = Rand() % max_submat_list_size + 1; max_generated_submat_list_size = max_generated_submat_list_size < num_locations ? num_locations : max_generated_submat_list_size; submat_lists[i].reserve(num_locations); for (int32 j = 0; j < num_locations; j++) { // note from dan: I edited the following line to resolve a valgrind error // but cannot really understand at this point what this code is doing. if (j <= min_num_kaddrows && j < num_submat_indexes) { // since we need min_num_kaddrows in the split_lists we ensure that // we add a pair with the same first element in all the submat_lists submat_lists[i].push_back(std::make_pair(submat_indexes[j], Rand() % minibatch_size)); } submat_lists[i].push_back( std::make_pair(submat_indexes[Rand() % num_submat_indexes], Rand() % minibatch_size)); } all_pairs.insert(all_pairs.end(), submat_lists[i].begin(), submat_lists[i].end()); } SplitLocations(submat_lists, &split_lists); if (verbose) { KALDI_LOG << "submat_list"; PrintVectorVectorPair(submat_lists); KALDI_LOG << "split_lists"; PrintVectorVectorPair(split_lists); KALDI_LOG << "==========================="; KALDI_LOG << split_lists.size(); } int32 num_kaddrows_in_output = 0; int32 first_value; std::vector<int32> second_values; // ensure that elements in submat_lists are also present // in split_lists for (int32 i = 0 ; i < split_lists.size(); i++) { second_values.clear(); if (ConvertToIndexes(split_lists[i], &first_value, &second_values)) { // Checking if ConvertToIndexes did a proper conversion of the indexes for (int32 j = 0; j < second_values.size(); j++) { if (split_lists[i][j].first != -1) KALDI_ASSERT((split_lists[i][j].first == first_value) && (split_lists[i][j].second == second_values[j])); } num_kaddrows_in_output++; } for (int32 j = 0; j < split_lists[i].size(); j++) { if (split_lists[i][j].first == -1) continue; std::vector<std::pair<int32, int32> >::iterator iter = std::find_if(all_pairs.begin(), all_pairs.end(), ComparePair(split_lists[i][j])); KALDI_ASSERT(iter != all_pairs.end()); all_pairs.erase(iter); } } KALDI_ASSERT(all_pairs.size() == 0); // ensure that there are at least as many kAddRows compatible split_lists as // specified KALDI_ASSERT(num_kaddrows_in_output >= min_num_kaddrows); } } // namespace nnet2 } // namespace kaldi int main() { using namespace kaldi; using namespace kaldi::nnet3; bool verbose = false; for (int32 loop = 0; loop < 10; loop++) { UnitTestSplitLocations(verbose); UnitTestSplitLocationsBackward(verbose); UnitTestHasContiguousProperty(); UnitTestEnsureContiguousProperty(); } KALDI_LOG << "Tests passed."; return 0; } |