Blame view

src/nnet3/nnet-compile.h 20.4 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
  // nnet3/nnet-compile.h
  
  // Copyright 2015-2016    Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #ifndef KALDI_NNET3_NNET_COMPILE_H_
  #define KALDI_NNET3_NNET_COMPILE_H_
  
  #include "nnet3/nnet-component-itf.h"
  #include "nnet3/nnet-nnet.h"
  #include "nnet3/nnet-parse.h"
  #include "nnet3/nnet-computation.h"
  #include "nnet3/nnet-computation-graph.h"
  
  #include <iostream>
  
  namespace kaldi {
  namespace nnet3 {
  
  struct CompilerOptions {
    bool output_debug_info;
  
    CompilerOptions(): output_debug_info(true) { }
  };
  
  /// This class creates an initial version of the NnetComputation, without any
  /// optimization or sharing of matrices.    Note: for a user-level interface
  /// that includes optimization, see class CachingOptimizingCompiler in
  /// nnet-optimize.h.
  class Compiler {
   public:
    // Constructor that takes one computation request (this is the normal case).
    Compiler(const ComputationRequest &request,
             const Nnet &nnet);
  
    // Constructor with a sequence of computation requests, for multiple
    // computation segments (used when creating online computations).
    Compiler(const std::vector<const ComputationRequest*> &request,
             const Nnet &nnet);
  
    void CreateComputation(const CompilerOptions &opts,
                           NnetComputation *computation);
  
   private:
    // requests_ is the sequence of computation requests, one for each segment; it
    // will contain just one element in the normal case, but more when we're
    // compiling a multi-segment / 'online' computation.
    std::vector<const ComputationRequest*> requests_;
    const Nnet &nnet_;
    ComputationGraph graph_;
  
    // Some generic information about each step of the computation... a step is an
    // instance of a NetworkNode, but a NetworkNode may in general have multiple
    // steps.  A single step may turn into no commands (for input nodes), or
    // multiple commands.  The StepInfo also contains info about the backprop
    // corresponding to its forward command.
    struct StepInfo {
      int32 node_index;  // network-node index
      int32 value;  // sub-matrix index of value that this step outputs.
      int32 deriv;  // sub-matrix index of derivative at the output of this step; zero
                    // if not used (note: index zero is reserved for the empty
                    // matrix).
  
      int32 segment;  // normally 0 except for online/multi-segment computations,
                      // identifies the segment of which this step is a part (each
                      // segment in the sequence has a different
                      // ComputationRequest).
  
      // precomputed_indexes_index is the index into the
      // component_precomputed_indexes array in the NnetComputation, or zero if
      // none needed.
      int32 precomputed_indexes_index;
  
      std::vector<Index> output_indexes;      // Indexes that this step outputs.
      std::vector<int32> output_cindex_ids;   // cindex_ids corresponding to each
                                              // of the output indexes.
  
      // If this component is of type kDescriptor (and note that the top-level
      // Descriptor is a concatenation over >= 1 parts), then we set value_parts
      // to a list of submatrix-indexes, each for the corresponding part of the
      // value.  If there is only one part, it will have one element which will be
      // the same as "value".
      std::vector<int32> value_parts;
      // deriv_parts is as "value_parts", but for parts of the derivative (if
      // we're doing backprop).
      std::vector<int32> deriv_parts;
  
      // for nodes corresponding to descriptors, input_locations_list will contain
      // information about the inputs to this descriptor, telling us for each row
      // of the matrix what other matrix rows it is a summation over.  this is a
      // quantity indexed[part-index][row-index], then a list of pairs (step,
      // row-index), representing source Cindexes present in a summation, that we
      // store here to avoid computing it twice in forward and backprop.
      std::vector<std::vector<std::vector<std::pair<int32,int32> > > > input_locations_list;
  
      StepInfo(): node_index(-1), value(0), deriv(0), segment(0),
                  precomputed_indexes_index(0) { }
    };
  
    // Computes the set of step-indexes of preceding steps that this step depends
    // on.  Assumes CreateLocationInfo() has already been called.  Requires
    // 'step_index' only to handle a special case, that if 'this_step' is a
    // component step, then the only step it depends on is the preceding step
    // (which is the component-input step).
    void ComputeStepDependencies(const std::vector<int32> &this_step,
                                 int32 step_index,
                                 unordered_set<int32> *dep_steps);
  
    // This function outputs to each element of "deriv_needed" a bool saying
    // whether, for that step, we need to allocate the matrix of derivatives
    // (interpret this as being at the output of that step).  This variable
    // also tells us whether we need to execute the backprop code for that step.
    //  'steps' is a vector of steps; each step is a list of cindexes.
    //  'step_to_segment', which should have the same dimension as 'steps',
    //    maps from step index to the segment it occurs in (only interesting
    //    for multi-segment/online computations).
    //  'deriv_needed' will be given the same length as 'steps'.
    void ComputeDerivNeeded(const std::vector<std::vector<int32> > &steps,
                            const std::vector<int32> &step_to_segment,
                            std::vector<bool> *deriv_needed);
  
    // this sets up steps_, destroying the input "by_step" in the process.  It
    // also sets various matrix and sub-matrix sizes in "computation".  The input
    // 'by_step' is elsewhere referred to as just 'step'; it is a vector of steps,
    // and each step is a vector of cindex_ids that are computed by that step.
    void CreateStepInfo(const std::vector<bool> &deriv_needed,
                        const std::vector<int32> &step_to_segment,
                        std::vector<std::vector<int32> > *by_step,
                        NnetComputation *computation);
  
    // Gets the stride type, kDefaultStride or kStrideEqualNumCols,
    // at the output of this node: interrogates component flags
    // looking for kInputContiguous or kOutputContiguous.
    MatrixStrideType GetStrideType(int32 node_index) const;
  
  
    // Miscellaneous info pertaining to various steps of the computation.  Indexed
    // by step-index.
    std::vector<StepInfo> steps_;
  
    /// This maps each cindex_id to its location.  However, you should not rely on
    /// its accuracy for cindex_ids that correspond to the Descriptors at
    /// Component inputs, since it's possible in principle for such cindex_ids to
    /// exist at >1 location.  (This is not a problem in practice, because we only
    /// need this for the outputs of component-nodes, and for computation inputs).
    /// A location is a pair (step-index, matrix-row-index).
    std::vector<std::pair<int32, int32> > cindex_id_to_location_;
  
  
    // Adds to the computation object the information about the matrix sizes
    void DefineMatrices(NnetComputation *computation) const;
  
    // Sets up sub-matrix indexes for nodes of type Descriptor (needed mainly
    // because Descriptors in general have many parts corresponding to
    // feature-dimension ranges, and they live in sub-matrices.
    void DefineSubmatrices(NnetComputation *computation);
  
    // Adds to the computation object the commands to allocate the matrices.
    // 'whole_submatrices' is as created by computation->GetWholeSubmatrices(), it
    // gives us the index of a submatrix containing the whole of each matrix.
    void AllocateMatrices(const std::vector<int32> &whole_submatrices,
                          NnetComputation *computation) const;
  
    // Sets up the precomputed indexes for each component, and sets the
    // precomputed_indexes_index value for each step.
    void SetUpPrecomputedIndexes(const std::vector<int32> &step_to_segment,
                                 NnetComputation *computation);
  
    // Adds to "computation" the command(s) for the forward computation
    // for this step.
    void CompileForward(int32 step, NnetComputation *computation) const;
  
    // Called from CompileForward, handles the case where the step corresponds
    // to a Component.
    void AddForwardStepComponent(int32 step, NnetComputation *computation) const;
  
    // Called from CompileForward, handles the case where the step corresponds
    // to an input node.
    void AddForwardStepInput(int32 step, NnetComputation *computation) const;
  
    // Returns true if step 'step' is an input step.   If step >= steps_.size(),
    // returns false.
    bool IsInputStep(int32 step) const;
  
  
    // Called from CompileForward, handles the case where the step
    // corresponds to type kDescriptor
    void CompileForwardDescriptor(
        int32 step, NnetComputation *computation) const;
  
    void CompileForwardSumDescriptor(
        int32 step, int32 part_index, NnetComputation *computation) const;
  
  
    // For the "part_index"'th part of the Descriptor for step "step" (which
    // must correspond to a Descriptor and not an Input or Component), this
    // function computes a vector of lists of submatrix locations of the inputs.
    // It is indexed by the number of rows in the output of this descriptor,
    // and the i'th element of the output is a list of pairs (step-index,
    // row-index-of-matrix).  The output of this row of this row of this part
    // of the computation will be a sum over those pairs.
    void ComputeInputLocationsList(
        int32 step, int32 part_index,
        std::vector<std::vector<std::pair<int32, int32> > > *input_locations)
        const;
  
    /**
       This function helps to handle scalar factors in Descriptors (expressions
       like `Scale(-1.0, <descriptor)`).  It splits an input_locations_list
       for one SumDescriptor (consisting of one of the appended-together parts
       of a Descriptor) by scale, such that each split-up locations_list
       corresponds to a single scaling factor.
       The scaling factors are all 1.0 by default, but may be different from
       1.0 if the user uses `Scale(...)` expressions in descriptors, e.g.
       `Scale(-1.0, lstm1.z)`.
       To help efficiency, this function treats the case where all the scales
       in the expression are the same (usually 1.0), as a special case.  In this
       case, 'split_locations_lists' will be empty and the shared scale (e.g. 1.0)
       is returned.
  
         @param [in] descriptor  The SumDescriptor for which we're getting
                        scalar factors.
         @param [in] input_locations_list This is one element of the
                        input_locations_list from the StepInfo of the step we are
                        computing, corresponding to this SumDescriptor (i.e. one
                        part of the Descriptor).  It is indexed by row-index, then
                        it is a list of pairs (step, row-index), representing
                        source Cindexes of a summation.  This function will work
                        out what scaling factors the pairs in these lists have.
         @param [out] split_locations_lists
                        We write to this location.  If all the scaling factors
                        are the same this will be set to the empty list and the
                        common scaling factor returned.  Otherwise +infinity
                        will be returned and the split-up list will be
                        written to the location.  Each element
                        (*split_locations_lists)[i] will be set to a pair
                        (alpha, partial_input_locations_list)
                        where alpha is the scaling factor associated with this
                        split-up piece (e.g. -1.0 if it was part of an expression
                        like `Scale(-1.0, lstm1.z)`), and
                        'partial_input_locations_list' is a vector with the same
                        dimension as 'input_locations_list' (indexed by row-index),
                        where partial_input_locations_list[r] will contain a subset
                        of the pairs present in input_locations_list[r], and
                        if we were to append together all the
                        (*split_locations_lists)[*].second.partial_input_locations_list[r],
                        we'd get a list with the same members as
                        input_locations_list[r], although not necessarily in the same
                        order.
          @return  In the general case (where multiple scales are used), returns
                   +infinity and sets 'split_locations_lists' to the split-up list.
                   In the special, but more common case where only a single scale
                   is used, return that scale (1.0 will be the most common value)
                   and set 'split_locations_lists' to empty; in this special case,
                   which has been made a special case for efficiency reasons,
                   the user should directly use the un-split locations list in
                   'input_locations_list'.
     */
    BaseFloat SplitByScale(const SumDescriptor &descriptor,
     const std::vector<std::vector<std::pair<int32,int32> > > &input_locations_list,
     std::vector<std::pair<BaseFloat,
                           std::vector<std::vector<std::pair<int32,int32> > > > >
                           *split_locations_lists) const;
  
    // Changes the format of the location-list produced by ComputeInputLocationsList,
    // to have pairs (sub-matrix, row) instead of (step, row), by replacing each step
    // (i.e. the first of each pair) with steps_[step].value.
    void ComputeValueSubmatLocationsList(
   const std::vector<std::vector<std::pair<int32, int32> > > &input_locations_list,
       std::vector<std::vector<std::pair<int32, int32> > > *submat_locations_list)
        const;
  
  
    // Changes the format of the location-list produced by
    // ComputeInputLocationsList, to have pairs (sub-matrix, row) instead of
    // (step, row), but with locations of derivatives not values (for use in
    // backprop).  It does this by replacing each step (i.e. the first of each
    // pair) with steps_[step].deriv, but if this value is zero (i.e. no such
    // derivative exists) it removes the pair.  This could occur in situations
    // where we only need to propagate the derivative selectively to some inputs.
    void ComputeDerivSubmatLocationsList(
   const std::vector<std::vector<std::pair<int32, int32> > > &input_locations_list,
   std::vector<std::vector<std::pair<int32, int32> > > *submat_locations_list)
        const;
  
  
  
    /** Adds to 'computation' commands for part of the forward computation
        corresponding to a Descriptor.  This is called from
        CompileForwardSumDescriptor.
  
        @param [in] value_submatrix_index  The submatrix index
                 of the quanitity we are computing (part of a Descriptor;
                 it's something like Sum(tdnn1, tdnn2) in general).
        @param [in] alpha  The scale (1.0 unless Scale(...) expressions are
                 involved in descriptors) with which these terms are present
                 in the summation.
        @param [in] submat_locations  Indexed by the row index of
                 the submatrix referred to by 'value_submatrix_index', each element is
                 a list of sources over which we must sum to obtain
                 that row.  Each source is a pair (submatrix-index, row-index).
    */
    void CompileForwardFromSubmatLocationsList(
        int32 value_submatrix_index,
        BaseFloat alpha,
        const std::vector<std::vector<std::pair<int32, int32> > > &submat_locations,
        NnetComputation *computation) const;
  
    /** Adds to 'computation' commands for part of the forward computation
        corresponding to a Descriptor.  This is called from
        CompileForwardFromSubmatLocationsList.
  
        @param [in] value_submatrix_index  The submatrix index
                 of the quanitity we are computing (part of a Descriptor;
                 it's something like Sum(tdnn1, tdnn2) in general).
        @param [in] alpha  The scale (1.0 unless Scale(...) expressions are
                 involved in descriptors) with which these terms are present
                 in the summation.
        @param [in] submat_locations  Indexed by the row index corresponding
                 to the rows of the submatrix referred to by 'value_submatrix_index',
                 this reprenents the source vector which we are adding to this row,
                 in the format (submatrix-index, row-index), or (-1, -1)
                 if in this case there is nothing to add.
         @param [in,out] computation  The computation which we are adding
                 commands to.
    */
    void CompileForwardFromSubmatLocations(
        int32 value_submatrix_index,
        BaseFloat alpha,
        const std::vector<std::pair<int32, int32> > &submat_locations,
        NnetComputation *computation) const;
  
  
    /** Adds to `computation` a command that adds to the submatrix in
        `value_submatrix_index` a quantity consisting of alpha times
        the submatrix in `input_submatrix_index`, with a row mapping
        given by `indexes`.
    */
    void CompileForwardFromIndexes(
        int32 value_submatrix_index,
        int32 input_submatrix_index,
        BaseFloat alpha,
        const std::vector<int32> &indexes,
        NnetComputation *computation) const;
  
  
    // Adds to "computation" the command(s) for the backward computation (if any) for
    // this step.  (non-const only because we clear the cached submat_locations).
    void CompileBackward(int32 step, NnetComputation *computation);
  
    // Called from CompileBackward, handles the case where the step corresponds
    // to a Component.
    void AddBackwardStepComponent(int32 step, NnetComputation *computation) const;
  
    // Called from CompileBackward, handles the case where the step
    // corresponds to an input.  If applicable, this generates a command for the
    // network to provide the derivative w.r.t. the input, to the user.
    void AddBackwardStepInput(int32 step, NnetComputation *computation) const;
  
    // Called from CompileBackward, handles the case where the step
    // corresponds to type kDescriptor.
    void CompileBackwardDescriptor(
        int32 step, NnetComputation *computation);
  
    // Called from CompileBackwardSumDescriptor.
    void CompileBackwardSumDescriptor(
        int32 step, int32 part_index,
        NnetComputation *computation) const;
  
    // Called from CompileBackwardForwardingDescriptor.
    void CompileBackwardFromSubmatLocationsList(
        int32 deriv_submatrix_index,
        BaseFloat alpha,
        const std::vector<std::vector<std::pair<int32, int32> > >&submat_locations,
        NnetComputation *computation) const;
  
  
    void CompileBackwardFromSubmatLocations(
        int32 deriv_submatrix_index,
        BaseFloat alpha,
        const std::vector<std::pair<int32, int32> > &submat_locations,
        NnetComputation *computation) const;
  
    // Called from CompileBackwardFromSubmatLocations - special case where
    // input is from just one matrix.
    void CompileBackwardFromIndexes(
        int32 deriv_submatrix_index,
        int32 input_deriv_submatrix_index,
        BaseFloat alpha,
        const std::vector<int32> &indexes,
        NnetComputation *computation) const;
  
  
    // [to be called after steps_ is set up and all the forward and backprop
    // commands have been added].  Adds to the computation the commands that
    // deinitialize all the matrices, except those that may be requested by
    // the user after the computation is done (i.e. outputs of the network,
    // and input derivatives).
    // 'whole_submatrices' is as created by computation->GetWholeSubmatrices(), it
    // gives us the index of a submatrix containing the whole of each matrix.
    void DeallocateMatrices(const std::vector<int32> &whole_submatrices,
                            const std::vector<int32> &step_to_segment,
                            NnetComputation *computation);
  
    // sets up the debug_info member of "computation".
    void OutputDebugInfo(NnetComputation *computation) const;
  
    void AddCommands(const std::vector<bool> &deriv_needed,
                     const std::vector<int32> &step_to_segment,
                     NnetComputation *computation);
  
  };
  
  
  
  
  } // namespace nnet3
  } // namespace kaldi
  
  
  #endif