Blame view
src/nnet3/nnet-compile.h
20.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
// nnet3/nnet-compile.h // Copyright 2015-2016 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET3_NNET_COMPILE_H_ #define KALDI_NNET3_NNET_COMPILE_H_ #include "nnet3/nnet-component-itf.h" #include "nnet3/nnet-nnet.h" #include "nnet3/nnet-parse.h" #include "nnet3/nnet-computation.h" #include "nnet3/nnet-computation-graph.h" #include <iostream> namespace kaldi { namespace nnet3 { struct CompilerOptions { bool output_debug_info; CompilerOptions(): output_debug_info(true) { } }; /// This class creates an initial version of the NnetComputation, without any /// optimization or sharing of matrices. Note: for a user-level interface /// that includes optimization, see class CachingOptimizingCompiler in /// nnet-optimize.h. class Compiler { public: // Constructor that takes one computation request (this is the normal case). Compiler(const ComputationRequest &request, const Nnet &nnet); // Constructor with a sequence of computation requests, for multiple // computation segments (used when creating online computations). Compiler(const std::vector<const ComputationRequest*> &request, const Nnet &nnet); void CreateComputation(const CompilerOptions &opts, NnetComputation *computation); private: // requests_ is the sequence of computation requests, one for each segment; it // will contain just one element in the normal case, but more when we're // compiling a multi-segment / 'online' computation. std::vector<const ComputationRequest*> requests_; const Nnet &nnet_; ComputationGraph graph_; // Some generic information about each step of the computation... a step is an // instance of a NetworkNode, but a NetworkNode may in general have multiple // steps. A single step may turn into no commands (for input nodes), or // multiple commands. The StepInfo also contains info about the backprop // corresponding to its forward command. struct StepInfo { int32 node_index; // network-node index int32 value; // sub-matrix index of value that this step outputs. int32 deriv; // sub-matrix index of derivative at the output of this step; zero // if not used (note: index zero is reserved for the empty // matrix). int32 segment; // normally 0 except for online/multi-segment computations, // identifies the segment of which this step is a part (each // segment in the sequence has a different // ComputationRequest). // precomputed_indexes_index is the index into the // component_precomputed_indexes array in the NnetComputation, or zero if // none needed. int32 precomputed_indexes_index; std::vector<Index> output_indexes; // Indexes that this step outputs. std::vector<int32> output_cindex_ids; // cindex_ids corresponding to each // of the output indexes. // If this component is of type kDescriptor (and note that the top-level // Descriptor is a concatenation over >= 1 parts), then we set value_parts // to a list of submatrix-indexes, each for the corresponding part of the // value. If there is only one part, it will have one element which will be // the same as "value". std::vector<int32> value_parts; // deriv_parts is as "value_parts", but for parts of the derivative (if // we're doing backprop). std::vector<int32> deriv_parts; // for nodes corresponding to descriptors, input_locations_list will contain // information about the inputs to this descriptor, telling us for each row // of the matrix what other matrix rows it is a summation over. this is a // quantity indexed[part-index][row-index], then a list of pairs (step, // row-index), representing source Cindexes present in a summation, that we // store here to avoid computing it twice in forward and backprop. std::vector<std::vector<std::vector<std::pair<int32,int32> > > > input_locations_list; StepInfo(): node_index(-1), value(0), deriv(0), segment(0), precomputed_indexes_index(0) { } }; // Computes the set of step-indexes of preceding steps that this step depends // on. Assumes CreateLocationInfo() has already been called. Requires // 'step_index' only to handle a special case, that if 'this_step' is a // component step, then the only step it depends on is the preceding step // (which is the component-input step). void ComputeStepDependencies(const std::vector<int32> &this_step, int32 step_index, unordered_set<int32> *dep_steps); // This function outputs to each element of "deriv_needed" a bool saying // whether, for that step, we need to allocate the matrix of derivatives // (interpret this as being at the output of that step). This variable // also tells us whether we need to execute the backprop code for that step. // 'steps' is a vector of steps; each step is a list of cindexes. // 'step_to_segment', which should have the same dimension as 'steps', // maps from step index to the segment it occurs in (only interesting // for multi-segment/online computations). // 'deriv_needed' will be given the same length as 'steps'. void ComputeDerivNeeded(const std::vector<std::vector<int32> > &steps, const std::vector<int32> &step_to_segment, std::vector<bool> *deriv_needed); // this sets up steps_, destroying the input "by_step" in the process. It // also sets various matrix and sub-matrix sizes in "computation". The input // 'by_step' is elsewhere referred to as just 'step'; it is a vector of steps, // and each step is a vector of cindex_ids that are computed by that step. void CreateStepInfo(const std::vector<bool> &deriv_needed, const std::vector<int32> &step_to_segment, std::vector<std::vector<int32> > *by_step, NnetComputation *computation); // Gets the stride type, kDefaultStride or kStrideEqualNumCols, // at the output of this node: interrogates component flags // looking for kInputContiguous or kOutputContiguous. MatrixStrideType GetStrideType(int32 node_index) const; // Miscellaneous info pertaining to various steps of the computation. Indexed // by step-index. std::vector<StepInfo> steps_; /// This maps each cindex_id to its location. However, you should not rely on /// its accuracy for cindex_ids that correspond to the Descriptors at /// Component inputs, since it's possible in principle for such cindex_ids to /// exist at >1 location. (This is not a problem in practice, because we only /// need this for the outputs of component-nodes, and for computation inputs). /// A location is a pair (step-index, matrix-row-index). std::vector<std::pair<int32, int32> > cindex_id_to_location_; // Adds to the computation object the information about the matrix sizes void DefineMatrices(NnetComputation *computation) const; // Sets up sub-matrix indexes for nodes of type Descriptor (needed mainly // because Descriptors in general have many parts corresponding to // feature-dimension ranges, and they live in sub-matrices. void DefineSubmatrices(NnetComputation *computation); // Adds to the computation object the commands to allocate the matrices. // 'whole_submatrices' is as created by computation->GetWholeSubmatrices(), it // gives us the index of a submatrix containing the whole of each matrix. void AllocateMatrices(const std::vector<int32> &whole_submatrices, NnetComputation *computation) const; // Sets up the precomputed indexes for each component, and sets the // precomputed_indexes_index value for each step. void SetUpPrecomputedIndexes(const std::vector<int32> &step_to_segment, NnetComputation *computation); // Adds to "computation" the command(s) for the forward computation // for this step. void CompileForward(int32 step, NnetComputation *computation) const; // Called from CompileForward, handles the case where the step corresponds // to a Component. void AddForwardStepComponent(int32 step, NnetComputation *computation) const; // Called from CompileForward, handles the case where the step corresponds // to an input node. void AddForwardStepInput(int32 step, NnetComputation *computation) const; // Returns true if step 'step' is an input step. If step >= steps_.size(), // returns false. bool IsInputStep(int32 step) const; // Called from CompileForward, handles the case where the step // corresponds to type kDescriptor void CompileForwardDescriptor( int32 step, NnetComputation *computation) const; void CompileForwardSumDescriptor( int32 step, int32 part_index, NnetComputation *computation) const; // For the "part_index"'th part of the Descriptor for step "step" (which // must correspond to a Descriptor and not an Input or Component), this // function computes a vector of lists of submatrix locations of the inputs. // It is indexed by the number of rows in the output of this descriptor, // and the i'th element of the output is a list of pairs (step-index, // row-index-of-matrix). The output of this row of this row of this part // of the computation will be a sum over those pairs. void ComputeInputLocationsList( int32 step, int32 part_index, std::vector<std::vector<std::pair<int32, int32> > > *input_locations) const; /** This function helps to handle scalar factors in Descriptors (expressions like `Scale(-1.0, <descriptor)`). It splits an input_locations_list for one SumDescriptor (consisting of one of the appended-together parts of a Descriptor) by scale, such that each split-up locations_list corresponds to a single scaling factor. The scaling factors are all 1.0 by default, but may be different from 1.0 if the user uses `Scale(...)` expressions in descriptors, e.g. `Scale(-1.0, lstm1.z)`. To help efficiency, this function treats the case where all the scales in the expression are the same (usually 1.0), as a special case. In this case, 'split_locations_lists' will be empty and the shared scale (e.g. 1.0) is returned. @param [in] descriptor The SumDescriptor for which we're getting scalar factors. @param [in] input_locations_list This is one element of the input_locations_list from the StepInfo of the step we are computing, corresponding to this SumDescriptor (i.e. one part of the Descriptor). It is indexed by row-index, then it is a list of pairs (step, row-index), representing source Cindexes of a summation. This function will work out what scaling factors the pairs in these lists have. @param [out] split_locations_lists We write to this location. If all the scaling factors are the same this will be set to the empty list and the common scaling factor returned. Otherwise +infinity will be returned and the split-up list will be written to the location. Each element (*split_locations_lists)[i] will be set to a pair (alpha, partial_input_locations_list) where alpha is the scaling factor associated with this split-up piece (e.g. -1.0 if it was part of an expression like `Scale(-1.0, lstm1.z)`), and 'partial_input_locations_list' is a vector with the same dimension as 'input_locations_list' (indexed by row-index), where partial_input_locations_list[r] will contain a subset of the pairs present in input_locations_list[r], and if we were to append together all the (*split_locations_lists)[*].second.partial_input_locations_list[r], we'd get a list with the same members as input_locations_list[r], although not necessarily in the same order. @return In the general case (where multiple scales are used), returns +infinity and sets 'split_locations_lists' to the split-up list. In the special, but more common case where only a single scale is used, return that scale (1.0 will be the most common value) and set 'split_locations_lists' to empty; in this special case, which has been made a special case for efficiency reasons, the user should directly use the un-split locations list in 'input_locations_list'. */ BaseFloat SplitByScale(const SumDescriptor &descriptor, const std::vector<std::vector<std::pair<int32,int32> > > &input_locations_list, std::vector<std::pair<BaseFloat, std::vector<std::vector<std::pair<int32,int32> > > > > *split_locations_lists) const; // Changes the format of the location-list produced by ComputeInputLocationsList, // to have pairs (sub-matrix, row) instead of (step, row), by replacing each step // (i.e. the first of each pair) with steps_[step].value. void ComputeValueSubmatLocationsList( const std::vector<std::vector<std::pair<int32, int32> > > &input_locations_list, std::vector<std::vector<std::pair<int32, int32> > > *submat_locations_list) const; // Changes the format of the location-list produced by // ComputeInputLocationsList, to have pairs (sub-matrix, row) instead of // (step, row), but with locations of derivatives not values (for use in // backprop). It does this by replacing each step (i.e. the first of each // pair) with steps_[step].deriv, but if this value is zero (i.e. no such // derivative exists) it removes the pair. This could occur in situations // where we only need to propagate the derivative selectively to some inputs. void ComputeDerivSubmatLocationsList( const std::vector<std::vector<std::pair<int32, int32> > > &input_locations_list, std::vector<std::vector<std::pair<int32, int32> > > *submat_locations_list) const; /** Adds to 'computation' commands for part of the forward computation corresponding to a Descriptor. This is called from CompileForwardSumDescriptor. @param [in] value_submatrix_index The submatrix index of the quanitity we are computing (part of a Descriptor; it's something like Sum(tdnn1, tdnn2) in general). @param [in] alpha The scale (1.0 unless Scale(...) expressions are involved in descriptors) with which these terms are present in the summation. @param [in] submat_locations Indexed by the row index of the submatrix referred to by 'value_submatrix_index', each element is a list of sources over which we must sum to obtain that row. Each source is a pair (submatrix-index, row-index). */ void CompileForwardFromSubmatLocationsList( int32 value_submatrix_index, BaseFloat alpha, const std::vector<std::vector<std::pair<int32, int32> > > &submat_locations, NnetComputation *computation) const; /** Adds to 'computation' commands for part of the forward computation corresponding to a Descriptor. This is called from CompileForwardFromSubmatLocationsList. @param [in] value_submatrix_index The submatrix index of the quanitity we are computing (part of a Descriptor; it's something like Sum(tdnn1, tdnn2) in general). @param [in] alpha The scale (1.0 unless Scale(...) expressions are involved in descriptors) with which these terms are present in the summation. @param [in] submat_locations Indexed by the row index corresponding to the rows of the submatrix referred to by 'value_submatrix_index', this reprenents the source vector which we are adding to this row, in the format (submatrix-index, row-index), or (-1, -1) if in this case there is nothing to add. @param [in,out] computation The computation which we are adding commands to. */ void CompileForwardFromSubmatLocations( int32 value_submatrix_index, BaseFloat alpha, const std::vector<std::pair<int32, int32> > &submat_locations, NnetComputation *computation) const; /** Adds to `computation` a command that adds to the submatrix in `value_submatrix_index` a quantity consisting of alpha times the submatrix in `input_submatrix_index`, with a row mapping given by `indexes`. */ void CompileForwardFromIndexes( int32 value_submatrix_index, int32 input_submatrix_index, BaseFloat alpha, const std::vector<int32> &indexes, NnetComputation *computation) const; // Adds to "computation" the command(s) for the backward computation (if any) for // this step. (non-const only because we clear the cached submat_locations). void CompileBackward(int32 step, NnetComputation *computation); // Called from CompileBackward, handles the case where the step corresponds // to a Component. void AddBackwardStepComponent(int32 step, NnetComputation *computation) const; // Called from CompileBackward, handles the case where the step // corresponds to an input. If applicable, this generates a command for the // network to provide the derivative w.r.t. the input, to the user. void AddBackwardStepInput(int32 step, NnetComputation *computation) const; // Called from CompileBackward, handles the case where the step // corresponds to type kDescriptor. void CompileBackwardDescriptor( int32 step, NnetComputation *computation); // Called from CompileBackwardSumDescriptor. void CompileBackwardSumDescriptor( int32 step, int32 part_index, NnetComputation *computation) const; // Called from CompileBackwardForwardingDescriptor. void CompileBackwardFromSubmatLocationsList( int32 deriv_submatrix_index, BaseFloat alpha, const std::vector<std::vector<std::pair<int32, int32> > >&submat_locations, NnetComputation *computation) const; void CompileBackwardFromSubmatLocations( int32 deriv_submatrix_index, BaseFloat alpha, const std::vector<std::pair<int32, int32> > &submat_locations, NnetComputation *computation) const; // Called from CompileBackwardFromSubmatLocations - special case where // input is from just one matrix. void CompileBackwardFromIndexes( int32 deriv_submatrix_index, int32 input_deriv_submatrix_index, BaseFloat alpha, const std::vector<int32> &indexes, NnetComputation *computation) const; // [to be called after steps_ is set up and all the forward and backprop // commands have been added]. Adds to the computation the commands that // deinitialize all the matrices, except those that may be requested by // the user after the computation is done (i.e. outputs of the network, // and input derivatives). // 'whole_submatrices' is as created by computation->GetWholeSubmatrices(), it // gives us the index of a submatrix containing the whole of each matrix. void DeallocateMatrices(const std::vector<int32> &whole_submatrices, const std::vector<int32> &step_to_segment, NnetComputation *computation); // sets up the debug_info member of "computation". void OutputDebugInfo(NnetComputation *computation) const; void AddCommands(const std::vector<bool> &deriv_needed, const std::vector<int32> &step_to_segment, NnetComputation *computation); }; } // namespace nnet3 } // namespace kaldi #endif |