Blame view
src/nnet3/nnet-component-test.cc
20.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
// nnet3/nnet-component-test.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet3/nnet-nnet.h" #include "nnet3/nnet-simple-component.h" #include "nnet3/nnet-test-utils.h" namespace kaldi { namespace nnet3 { // Reset seeds for test time for RandomComponent static void ResetSeed(int32 rand_seed, const Component &c) { RandomComponent *rand_component = const_cast<RandomComponent*>(dynamic_cast<const RandomComponent*>(&c)); if (rand_component != NULL) { srand(rand_seed); rand_component->ResetGenerator(); } } // this is the same as calling StringsApproxEqual(), except it prints // a warning if it fails. bool CheckStringsApproxEqual(const std::string &a, const std::string &b, int32 tolerance = 3) { if (!StringsApproxEqual(a, b, tolerance)) { KALDI_WARN << "Strings differ: " << a << " vs. " << b; return false; } else { return true; } } void TestNnetComponentIo(Component *c) { bool binary = (Rand() % 2 == 0); std::ostringstream os1; c->Write(os1, binary); std::istringstream is(os1.str()); Component *c2 = Component::ReadNew(is, binary); std::ostringstream os2; c2->Write(os2, binary); if (!binary) { std::string s1 = os1.str(), s2 = os2.str(); KALDI_ASSERT(CheckStringsApproxEqual(s1, s2)); } delete c2; } void TestNnetComponentCopy(Component *c) { Component *c2 = c->Copy(); if (!StringsApproxEqual(c->Info(), c2->Info())) { KALDI_ERR << "Expected info strings to be equal: '" << c->Info() << "' vs. '" << c2->Info() << "'"; } delete c2; } void TestNnetComponentAddScale(Component *c) { Component *c2 = c->Copy(); Component *c3 = c2->Copy(); c3->Add(0.5, *c2); c2->Scale(1.5); KALDI_ASSERT(CheckStringsApproxEqual(c2->Info(), c3->Info())); delete c2; delete c3; } void TestNnetComponentVectorizeUnVectorize(Component *c) { if (!(c->Properties() & kUpdatableComponent)) return; UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(c); KALDI_ASSERT(uc != NULL); UpdatableComponent *uc2 = dynamic_cast<UpdatableComponent*>(uc->Copy()); uc2->Scale(0.0); Vector<BaseFloat> params(uc2->NumParameters()); uc2->Vectorize(¶ms); KALDI_ASSERT(params.Min()==0.0 && params.Sum()==0.0); uc->Vectorize(¶ms); uc2->UnVectorize(params); KALDI_ASSERT(CheckStringsApproxEqual(uc2->Info(), uc->Info())); BaseFloat x = uc2->DotProduct(*uc2), y = uc->DotProduct(*uc), z = uc2->DotProduct(*uc); KALDI_ASSERT(ApproxEqual(x, y) && ApproxEqual(y, z)); Vector<BaseFloat> params2(uc2->NumParameters()); uc2->Vectorize(¶ms2); for(int i = 0; i < params.Dim(); i++) KALDI_ASSERT(params(i) == params2(i)); delete uc2; } void TestNnetComponentUpdatable(Component *c) { if (!(c->Properties() & kUpdatableComponent)) return; UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(c); if (uc == NULL) { KALDI_ASSERT(!(c->Properties() & kUpdatableComponent) && "Component returns updatable flag but does not inherit " "from UpdatableComponent"); return; } if(!(uc->Properties() & kUpdatableComponent)){ // testing that if it declares itself as non-updatable, // Scale() and Add() have no effect. KALDI_ASSERT(uc->NumParameters() == 0); KALDI_ASSERT(uc->DotProduct(*uc) == 0); UpdatableComponent *uc2 = dynamic_cast<UpdatableComponent*>(uc->Copy()); uc2->Scale(7.0); uc2->Add(3.0, *uc); KALDI_ASSERT(CheckStringsApproxEqual(uc2->Info(), uc->Info())); uc->Scale(0.0); KALDI_ASSERT(CheckStringsApproxEqual(uc2->Info(), uc->Info())); delete uc2; } else { KALDI_ASSERT(uc->NumParameters() != 0); UpdatableComponent *uc2 = dynamic_cast<UpdatableComponent*>(uc->Copy()), *uc3 = dynamic_cast<UpdatableComponent*>(uc->Copy()); // testing some expected invariances of scale and add. uc2->Scale(5.0); uc2->Add(3.0, *uc3); uc3->Scale(8.0); // now they should both be scaled to 8 times the original component. if (!StringsApproxEqual(uc2->Info(), uc3->Info())) { KALDI_ERR << "Expected info strings to be equal: '" << uc2->Info() << "' vs. '" << uc3->Info() << "'"; } // testing that scaling by 0.5 works the same whether // done on the vectorized paramters or via Scale(). Vector<BaseFloat> vec2(uc->NumParameters()); uc2->Vectorize(&vec2); vec2.Scale(0.5); uc2->UnVectorize(vec2); uc3->Scale(0.5); KALDI_ASSERT(CheckStringsApproxEqual(uc2->Info(), uc3->Info())); // testing that Scale(0.0) works the same whether done on the vectorized // paramters or via SetZero(), and that unvectorizing something that's been // zeroed gives us zero parameters. uc2->Vectorize(&vec2); vec2.SetZero(); uc2->UnVectorize(vec2); uc3->Scale(0.0); uc3->Vectorize(&vec2); KALDI_ASSERT(uc2->Info() == uc3->Info() && VecVec(vec2, vec2) == 0.0); delete uc2; delete uc3; } } /* This function gets the 'ComponentPrecomputedIndexes*' pointer from a component, given the num-rows in the matrix of inputs we're testing it with. It uses a plausible arrangement of indexes. Note: in this file we primarily test simple components, and simple components don't return precomputed indexes; but we also test a few non-simple components that operate with the same set of indexes on the input and the output. Simple components would return NULL. */ ComponentPrecomputedIndexes *GetPrecomputedIndexes(const Component &c, int32 num_rows) { std::vector<Index> input_indexes(num_rows); int32 num_t_values; if (num_rows % 3 == 0) { num_t_values = 3; } else if (num_rows % 2 == 0) { num_t_values = 2; } else { num_t_values = 1; } for (int32 i = 0; i < num_rows; i++) { input_indexes[i].n = i % num_t_values; input_indexes[i].x = 0; input_indexes[i].t = i / num_t_values; } std::vector<Index> output_indexes(input_indexes); if (c.Properties()&kReordersIndexes) { c.ReorderIndexes(&input_indexes, &output_indexes); } MiscComputationInfo misc_info; bool need_backprop = true; // just in case. ComponentPrecomputedIndexes *ans = c.PrecomputeIndexes(misc_info, input_indexes, output_indexes, need_backprop); // ans will be NULL in most cases. return ans; } // tests the properties kPropagateAdds, kBackpropAdds, // kBackpropNeedsInput, kBackpropNeedsOutput. void TestSimpleComponentPropagateProperties(const Component &c) { int32 properties = c.Properties(); Component *c_copy = NULL; int32 rand_seed = Rand(); if (RandInt(0, 1) == 0) c_copy = c.Copy(); // This will test backprop with an updatable component. MatrixStrideType input_stride_type = (c.Properties()&kInputContiguous) ? kStrideEqualNumCols : kDefaultStride; MatrixStrideType output_stride_type = (c.Properties()&kOutputContiguous) ? kStrideEqualNumCols : kDefaultStride; MatrixStrideType both_stride_type = (c.Properties()&(kInputContiguous|kOutputContiguous)) ? kStrideEqualNumCols : kDefaultStride; int32 input_dim = c.InputDim(), output_dim = c.OutputDim(), num_rows = RandInt(1, 100); CuMatrix<BaseFloat> input_data(num_rows, input_dim, kUndefined, input_stride_type); input_data.SetRandn(); CuMatrix<BaseFloat> output_data3(num_rows, input_dim, kSetZero, output_stride_type); output_data3.CopyFromMat(input_data); CuMatrix<BaseFloat> output_data1(num_rows, output_dim, kSetZero, output_stride_type), output_data2(num_rows, output_dim, kSetZero, output_stride_type); output_data2.Add(1.0); if ((properties & kPropagateAdds) && (properties & kPropagateInPlace)) { KALDI_ERR << "kPropagateAdds and kPropagateInPlace flags are incompatible."; } ResetSeed(rand_seed, c); ComponentPrecomputedIndexes *indexes = GetPrecomputedIndexes(c, num_rows); void *memo = c.Propagate(indexes, input_data, &output_data1); ResetSeed(rand_seed, c); c.DeleteMemo(c.Propagate(indexes, input_data, &output_data2)); if (properties & kPropagateInPlace) { ResetSeed(rand_seed, c); c.DeleteMemo(c.Propagate(indexes, output_data3, &output_data3)); if (!output_data1.ApproxEqual(output_data3)) { KALDI_ERR << "Test of kPropagateInPlace flag for component of type " << c.Type() << " failed."; } } if (properties & kPropagateAdds) output_data2.Add(-1.0); // remove the offset AssertEqual(output_data1, output_data2); CuMatrix<BaseFloat> output_deriv(num_rows, output_dim, kSetZero, output_stride_type); output_deriv.SetRandn(); CuMatrix<BaseFloat> input_deriv1(num_rows, input_dim, kSetZero, input_stride_type), input_deriv2(num_rows, input_dim, kSetZero, input_stride_type); CuMatrix<BaseFloat> input_deriv3(num_rows, output_dim, kSetZero, both_stride_type); input_deriv3.CopyFromMat(output_deriv); input_deriv2.Add(1.0); CuMatrix<BaseFloat> empty_mat; // test with input_deriv1 that's zero c.Backprop("foobar", indexes, ((properties & kBackpropNeedsInput) ? input_data : empty_mat), ((properties & kBackpropNeedsOutput) ? output_data1 : empty_mat), output_deriv, memo, c_copy, &input_deriv1); // test with input_deriv2 that's all ones. c.Backprop("foobar", indexes, ((properties & kBackpropNeedsInput) ? input_data : empty_mat), ((properties & kBackpropNeedsOutput) ? output_data1 : empty_mat), output_deriv, memo, c_copy, &input_deriv2); // test backprop in place, if supported. if (properties & kBackpropInPlace) { c.Backprop("foobar", indexes, ((properties & kBackpropNeedsInput) ? input_data : empty_mat), ((properties & kBackpropNeedsOutput) ? output_data1 : empty_mat), input_deriv3, memo, c_copy, &input_deriv3); } c.DeleteMemo(memo); if (properties & kBackpropAdds) input_deriv2.Add(-1.0); // subtract the offset. AssertEqual(input_deriv1, input_deriv2); if (properties & kBackpropInPlace) AssertEqual(input_deriv1, input_deriv3); delete c_copy; delete indexes; } bool TestSimpleComponentDataDerivative(const Component &c, BaseFloat perturb_delta) { MatrixStrideType input_stride_type = (c.Properties()&kInputContiguous) ? kStrideEqualNumCols : kDefaultStride; MatrixStrideType output_stride_type = (c.Properties()&kOutputContiguous) ? kStrideEqualNumCols : kDefaultStride; int32 input_dim = c.InputDim(), output_dim = c.OutputDim(), num_rows = RandInt(1, 100), rand_seed = Rand(); int32 properties = c.Properties(); CuMatrix<BaseFloat> input_data(num_rows, input_dim, kSetZero, input_stride_type), output_data(num_rows, output_dim, kSetZero, output_stride_type), output_deriv(num_rows, output_dim, kSetZero, output_stride_type); input_data.SetRandn(); output_deriv.SetRandn(); ResetSeed(rand_seed, c); ComponentPrecomputedIndexes *indexes = GetPrecomputedIndexes(c, num_rows); void *memo = c.Propagate(indexes, input_data, &output_data); CuMatrix<BaseFloat> input_deriv(num_rows, input_dim, kSetZero, input_stride_type), empty_mat; c.Backprop("foobar", indexes, ((properties & kBackpropNeedsInput) ? input_data : empty_mat), ((properties & kBackpropNeedsOutput) ? output_data : empty_mat), output_deriv, memo, NULL, &input_deriv); c.DeleteMemo(memo); int32 test_dim = 3; BaseFloat original_objf = TraceMatMat(output_deriv, output_data, kTrans); Vector<BaseFloat> measured_objf_change(test_dim), predicted_objf_change(test_dim); for (int32 i = 0; i < test_dim; i++) { CuMatrix<BaseFloat> perturbed_input_data(num_rows, input_dim, kSetZero, input_stride_type), perturbed_output_data(num_rows, output_dim, kSetZero, output_stride_type); perturbed_input_data.SetRandn(); perturbed_input_data.Scale(perturb_delta); // at this point, perturbed_input_data contains the offset at the input data. predicted_objf_change(i) = TraceMatMat(perturbed_input_data, input_deriv, kTrans); perturbed_input_data.AddMat(1.0, input_data); ResetSeed(rand_seed, c); c.DeleteMemo(c.Propagate(indexes, perturbed_input_data, &perturbed_output_data)); measured_objf_change(i) = TraceMatMat(output_deriv, perturbed_output_data, kTrans) - original_objf; } KALDI_LOG << "Predicted objf-change = " << predicted_objf_change; KALDI_LOG << "Measured objf-change = " << measured_objf_change; BaseFloat threshold = 0.1; bool ans = ApproxEqual(predicted_objf_change, measured_objf_change, threshold); if (!ans) KALDI_WARN << "Data-derivative test failed, component-type=" << c.Type() << ", input-dim=" << input_dim << ", output-dim=" << output_dim; if (c.Type() == "NormalizeComponent" && input_dim == 1) { // derivatives are mathematically zero, but the measured and predicted // objf have different roundoff and the relative differences are large. // this is not unexpected. KALDI_LOG << "Accepting deriv differences since it is NormalizeComponent " << "with dim=1."; return true; } else if (c.Type() == "ClipGradientComponent") { KALDI_LOG << "Accepting deriv differences since " << "it is ClipGradientComponent."; return true; } delete indexes; return ans; } // if test_derivative == false then the test only tests that the update // direction is downhill. if true, then we measure the actual model-derivative // and check that it's accurate. // returns true on success, false on test failure. bool TestSimpleComponentModelDerivative(const Component &c, BaseFloat perturb_delta, bool test_derivative) { int32 input_dim = c.InputDim(), output_dim = c.OutputDim(), num_rows = RandInt(1, 100); int32 properties = c.Properties(); if ((properties & kUpdatableComponent) == 0) { // nothing to test. return true; } MatrixStrideType input_stride_type = (c.Properties()&kInputContiguous) ? kStrideEqualNumCols : kDefaultStride; MatrixStrideType output_stride_type = (c.Properties()&kOutputContiguous) ? kStrideEqualNumCols : kDefaultStride; CuMatrix<BaseFloat> input_data(num_rows, input_dim, kSetZero, input_stride_type), output_data(num_rows, output_dim, kSetZero, output_stride_type), output_deriv(num_rows, output_dim, kSetZero, output_stride_type); input_data.SetRandn(); output_deriv.SetRandn(); ComponentPrecomputedIndexes *indexes = GetPrecomputedIndexes(c, num_rows); void *memo = c.Propagate(indexes, input_data, &output_data); BaseFloat original_objf = TraceMatMat(output_deriv, output_data, kTrans); Component *c_copy = c.Copy(); const UpdatableComponent *uc = dynamic_cast<const UpdatableComponent*>(&c); UpdatableComponent *uc_copy = dynamic_cast<UpdatableComponent*>(c_copy); KALDI_ASSERT(uc != NULL && uc_copy != NULL); if (test_derivative) { uc_copy->Scale(0.0); uc_copy->SetAsGradient(); } CuMatrix<BaseFloat> input_deriv(num_rows, input_dim, kSetZero, input_stride_type), empty_mat; c.Backprop("foobar", indexes, ((properties & kBackpropNeedsInput) ? input_data : empty_mat), ((properties & kBackpropNeedsOutput) ? output_data : empty_mat), output_deriv, memo, c_copy, (RandInt(0, 1) == 0 ? &input_deriv : NULL)); c.DeleteMemo(memo); if (!test_derivative) { // Just testing that the model update is downhill. CuMatrix<BaseFloat> new_output_data(num_rows, output_dim, kSetZero, output_stride_type); c.DeleteMemo(c_copy->Propagate(indexes, input_data, &new_output_data)); BaseFloat new_objf = TraceMatMat(output_deriv, new_output_data, kTrans); bool ans = (new_objf > original_objf); if (!ans) { KALDI_WARN << "After update, new objf is not better than the original objf: " << new_objf << " <= " << original_objf; } delete c_copy; delete indexes; return ans; } else { // check that the model derivative is accurate. int32 test_dim = 3; Vector<BaseFloat> measured_objf_change(test_dim), predicted_objf_change(test_dim); for (int32 i = 0; i < test_dim; i++) { CuMatrix<BaseFloat> perturbed_output_data(num_rows, output_dim, kSetZero, output_stride_type); Component *c_perturbed = c.Copy(); UpdatableComponent *uc_perturbed = dynamic_cast<UpdatableComponent*>(c_perturbed); KALDI_ASSERT(uc_perturbed != NULL); uc_perturbed->PerturbParams(perturb_delta); predicted_objf_change(i) = uc_copy->DotProduct(*uc_perturbed) - uc_copy->DotProduct(*uc); c_perturbed->Propagate(indexes, input_data, &perturbed_output_data); measured_objf_change(i) = TraceMatMat(output_deriv, perturbed_output_data, kTrans) - original_objf; delete c_perturbed; } KALDI_LOG << "Predicted objf-change = " << predicted_objf_change; KALDI_LOG << "Measured objf-change = " << measured_objf_change; BaseFloat threshold = 0.1; bool ans = ApproxEqual(predicted_objf_change, measured_objf_change, threshold); if (!ans) KALDI_WARN << "Model-derivative test failed, component-type=" << c.Type() << ", input-dim=" << input_dim << ", output-dim=" << output_dim; delete c_copy; delete indexes; return ans; } } void UnitTestNnetComponent() { for (int32 n = 0; n < 200; n++) { Component *c = GenerateRandomSimpleComponent(); KALDI_LOG << c->Info(); TestNnetComponentIo(c); TestNnetComponentCopy(c); TestNnetComponentAddScale(c); TestNnetComponentVectorizeUnVectorize(c); TestNnetComponentUpdatable(c); TestSimpleComponentPropagateProperties(*c); if (!TestSimpleComponentDataDerivative(*c, 1.0e-04) && !TestSimpleComponentDataDerivative(*c, 1.0e-03) && !TestSimpleComponentDataDerivative(*c, 1.0e-05) && !TestSimpleComponentDataDerivative(*c, 1.0e-06)) KALDI_ERR << "Component data-derivative test failed"; if (!TestSimpleComponentModelDerivative(*c, 1.0e-04, false) && !TestSimpleComponentModelDerivative(*c, 1.0e-03, false) && !TestSimpleComponentModelDerivative(*c, 1.0e-06, false)) KALDI_ERR << "Component downhill-update test failed"; if (!TestSimpleComponentModelDerivative(*c, 1.0e-04, true) && !TestSimpleComponentModelDerivative(*c, 1.0e-03, true) && !TestSimpleComponentModelDerivative(*c, 1.0e-05, true) && !TestSimpleComponentModelDerivative(*c, 1.0e-06, true)) KALDI_ERR << "Component model-derivative test failed"; delete c; } } } // namespace nnet3 } // namespace kaldi int main() { using namespace kaldi; using namespace kaldi::nnet3; #if HAVE_CUDA == 1 kaldi::int32 loop = 0; for (loop = 0; loop < 2; loop++) { //CuDevice::Instantiate().SetDebugStrideMode(true); if (loop == 0) CuDevice::Instantiate().SelectGpuId("no"); else CuDevice::Instantiate().SelectGpuId("yes"); #endif UnitTestNnetComponent(); #if HAVE_CUDA == 1 } // No for loop if 'HAVE_CUDA != 1', CuDevice::Instantiate().PrintProfile(); #endif KALDI_LOG << "Nnet component tests succeeded."; return 0; } |