Blame view
src/nnet3/nnet-compute-test.cc
10 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
// nnet3/nnet-compute-test.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // 2015 Xiaohui Zhang // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet3/nnet-nnet.h" #include "nnet3/nnet-compile.h" #include "nnet3/nnet-analyze.h" #include "nnet3/nnet-test-utils.h" #include "nnet3/nnet-utils.h" #include "nnet3/nnet-optimize.h" #include "nnet3/nnet-compute.h" #include "nnet3/nnet-am-decodable-simple.h" #include "nnet3/decodable-simple-looped.h" namespace kaldi { namespace nnet3 { void UnitTestNnetComputationIo(NnetComputation *computation) { bool binary = (Rand() % 2 == 0); std::ostringstream os; computation->Write(os, binary); const std::string &original_output = os.str(); std::istringstream computation_is(original_output); computation->Read(computation_is, binary); std::istringstream computation_is2(original_output); NnetComputation computation2; computation2.Read(computation_is2, binary); std::ostringstream os2, os3; computation->Write(os2, binary); computation2.Write(os3, binary); if (binary) { if (!(os2.str() == original_output)) { KALDI_ERR << "Outputs differ for computation"; } } } void UnitTestComputationRequestIo(ComputationRequest *request) { bool binary = (Rand() % 2 == 0); std::ostringstream os; request->Write(os, binary); const std::string &original_output = os.str(); std::istringstream request_is(original_output); request->Read(request_is, binary); std::istringstream request_is2(original_output); ComputationRequest request2; request2.Read(request_is2, binary); std::ostringstream os2, os3; request->Write(os2, binary); request2.Write(os3, binary); KALDI_ASSERT(*request == request2); if (binary) { KALDI_ASSERT(os2.str() == original_output); KALDI_ASSERT(os3.str() == original_output); } } // this checks that a couple of different decodable objects give the same // answer. void TestNnetDecodable(Nnet *nnet) { int32 num_frames = 5 + RandInt(1, 100), input_dim = nnet->InputDim("input"), output_dim = nnet->OutputDim("output"), ivector_dim = std::max<int32>(0, nnet->InputDim("ivector")); Matrix<BaseFloat> input(num_frames, input_dim); SetBatchnormTestMode(true, nnet); SetDropoutTestMode(true, nnet); input.SetRandn(); Vector<BaseFloat> ivector(ivector_dim); ivector.SetRandn(); Vector<BaseFloat> priors(RandInt(0, 1) == 0 ? output_dim : 0); if (priors.Dim() != 0) { priors.SetRandn(); priors.ApplyExp(); } Matrix<BaseFloat> output1(num_frames, output_dim), output2(num_frames, output_dim); { NnetSimpleComputationOptions opts; opts.frames_per_chunk = RandInt(5, 25); CachingOptimizingCompiler compiler(*nnet); DecodableNnetSimple decodable(opts, *nnet, priors, input, &compiler, (ivector_dim != 0 ? &ivector : NULL)); for (int32 t = 0; t < num_frames; t++) { SubVector<BaseFloat> row(output1, t); decodable.GetOutputForFrame(t, &row); } } { NnetSimpleLoopedComputationOptions opts; // caution: this may modify nnet, by changing how it consumes iVectors. DecodableNnetSimpleLoopedInfo info(opts, priors, nnet); DecodableNnetSimpleLooped decodable(info, input, (ivector_dim != 0 ? &ivector : NULL)); for (int32 t = 0; t < num_frames; t++) { SubVector<BaseFloat> row(output2, t); decodable.GetOutputForFrame(t, &row); } } // the components that we exclude from this test, are excluded because they // all take "optional" right context, and this destroys the equivalence that // we are testing. if (!NnetIsRecurrent(*nnet) && nnet->Info().find("statistics-extraction") == std::string::npos && nnet->Info().find("TimeHeightConvolutionComponent") == std::string::npos && nnet->Info().find("RestrictedAttentionComponent") == std::string::npos) { // this equivalence will not hold for recurrent nnets, or those that // have the statistics-extraction/statistics-pooling layers, // or in general for nnets with convolution components (because these // might have 'optional' context if required-time-offsets != time-offsets. for (int32 t = 0; t < num_frames; t++) { SubVector<BaseFloat> row1(output1, t), row2(output2, t); KALDI_ASSERT(row1.ApproxEqual(row2)); } } } void UnitTestNnetCompute() { for (int32 n = 0; n < 20; n++) { struct NnetGenerationOptions gen_config; bool test_collapse_model = (RandInt(0, 1) == 0); std::vector<std::string> configs; GenerateConfigSequence(gen_config, &configs); Nnet nnet; for (size_t j = 0; j < configs.size(); j++) { KALDI_LOG << "Input config[" << j << "] is: " << configs[j]; std::istringstream is(configs[j]); nnet.ReadConfig(is); } ComputationRequest request; std::vector<Matrix<BaseFloat> > inputs; ComputeExampleComputationRequestSimple(nnet, &request, &inputs); // Test CollapseModel(). Note: lines with 'collapse' in some part of them // are not necessary for the rest of the test to run; they only test // CollapseModel(). if (test_collapse_model) { // this model collapsing code requires that test mode is set for batchnorm // and dropout components. SetBatchnormTestMode(true, &nnet); SetDropoutTestMode(true, &nnet); } NnetComputation computation; Compiler compiler(request, nnet); CompilerOptions opts; compiler.CreateComputation(opts, &computation); Nnet nnet_collapsed(nnet); CollapseModelConfig collapse_config; NnetComputation computation_collapsed; if (test_collapse_model) { CollapseModel(collapse_config, &nnet_collapsed); Compiler compiler_collapsed(request, nnet_collapsed); compiler_collapsed.CreateComputation(opts, &computation_collapsed); computation_collapsed.ComputeCudaIndexes(); } { std::ostringstream os; computation.Print(os, nnet); KALDI_LOG << "Generated computation is: " << os.str(); UnitTestNnetComputationIo(&computation); UnitTestComputationRequestIo(&request); } CheckComputationOptions check_config; // we can do the rewrite check since it's before optimization. check_config.check_rewrite = true; ComputationChecker checker(check_config, nnet, computation); checker.Check(); if (RandInt(0, 1) == 0) { NnetOptimizeOptions opt_config; Optimize(opt_config, nnet, MaxOutputTimeInRequest(request), &computation); { std::ostringstream os; computation.Print(os, nnet); KALDI_LOG << "Optimized computation is: " << os.str(); } } NnetComputeOptions compute_opts; if (RandInt(0, 1) == 0) compute_opts.debug = true; computation.ComputeCudaIndexes(); NnetComputer computer(compute_opts, computation, nnet, &nnet); // provide the input to the computation. for (size_t i = 0; i < request.inputs.size(); i++) { CuMatrix<BaseFloat> temp(inputs[i]); KALDI_LOG << "Input sum is " << temp.Sum(); computer.AcceptInput(request.inputs[i].name, &temp); } computer.Run(); const CuMatrixBase<BaseFloat> &output(computer.GetOutput("output")); KALDI_LOG << "Output sum is " << output.Sum(); if (test_collapse_model) { NnetComputer computer_collapsed(compute_opts, computation_collapsed, nnet_collapsed, &nnet_collapsed); for (size_t i = 0; i < request.inputs.size(); i++) { CuMatrix<BaseFloat> temp(inputs[i]); KALDI_LOG << "Input sum is " << temp.Sum(); computer_collapsed.AcceptInput(request.inputs[i].name, &temp); } computer_collapsed.Run(); const CuMatrixBase<BaseFloat> &output_collapsed( computer_collapsed.GetOutput("output")); KALDI_LOG << "Output sum [collapsed] is " << output_collapsed.Sum(); if (!ApproxEqual(output, output_collapsed)) { KALDI_ERR << "Regular and collapsed computations' outputs differ"; } } CuMatrix<BaseFloat> output_deriv(output.NumRows(), output.NumCols()); output_deriv.SetRandn(); // output_deriv sum won't be informative so don't print it. if (request.outputs[0].has_deriv) { computer.AcceptInput("output", &output_deriv); computer.Run(); for (size_t i = 0; i < request.inputs.size(); i++) { if (request.inputs[i].has_deriv) { const CuMatrixBase<BaseFloat> &in_deriv = computer.GetOutput(request.inputs[i].name); KALDI_LOG << "Input-deriv sum for input '" << request.inputs[i].name << "' is " << in_deriv.Sum(); } } } TestNnetDecodable(&nnet); } } } // namespace nnet3 } // namespace kaldi int main() { using namespace kaldi; using namespace kaldi::nnet3; // uncommenting the following activates extra checks during optimization, that // can help narrow down the source of problems. //SetVerboseLevel(4); for (kaldi::int32 loop = 0; loop < 2; loop++) { #if HAVE_CUDA == 1 CuDevice::Instantiate().SetDebugStrideMode(true); if (loop == 0) CuDevice::Instantiate().SelectGpuId("no"); else CuDevice::Instantiate().SelectGpuId("yes"); #endif UnitTestNnetCompute(); } KALDI_LOG << "Nnet tests succeeded."; return 0; } |