Blame view
src/nnet3/nnet-compute.cc
26.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
// nnet3/nnet-compute.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <iterator> #include <sstream> #include "nnet3/nnet-compute.h" namespace kaldi { namespace nnet3 { NnetComputer::NnetComputer(const NnetComputeOptions &options, const NnetComputation &computation, const Nnet &nnet, Nnet *nnet_to_update): options_(options), computation_(computation), nnet_(nnet), program_counter_(0), nnet_to_store_stats_(nnet_to_update), nnet_to_update_(nnet_to_update) { Init(); } NnetComputer::NnetComputer(const NnetComputeOptions &options, const NnetComputation &computation, Nnet *nnet, Nnet *nnet_to_update): options_(options), computation_(computation), nnet_(*nnet), program_counter_(0), nnet_to_store_stats_(nnet), nnet_to_update_(nnet_to_update) { Init(); } void NnetComputer::Init() { KALDI_ASSERT(computation_.indexes_cuda.size() == computation_.indexes.size() && computation_.indexes_ranges_cuda.size() == computation_.indexes_ranges.size() && "You must call NnetComputation::ComputeCudaIndexes() before " "executing the computation."); matrices_.resize(computation_.matrices.size()); debug_ = (options_.debug || GetVerboseLevel() >= 5); if (debug_) { ComputationVariables variables; variables.Init(computation_); ComputeCommandAttributes(nnet_, computation_, variables, &command_attributes_); std::string preamble; computation_.GetCommandStrings(nnet_, &preamble, &command_strings_); KALDI_LOG << preamble; computation_.GetSubmatrixStrings(nnet_, &submatrix_strings_); } } //static BaseFloat NnetComputer::MatrixStddev(const CuMatrixBase<BaseFloat> &m) { if (m.NumRows() == 0) return 0.0; return std::sqrt(TraceMatMat(m, m, kTrans) / (m.NumRows() * m.NumCols())); } //static BaseFloat NnetComputer::ParameterStddev(const Component &c) { const UpdatableComponent *uc = dynamic_cast<const UpdatableComponent*>(&c); KALDI_ASSERT(uc != NULL && "Attempting to get parameter stddev of non-updatable component"); return std::sqrt(uc->DotProduct(*uc) / uc->NumParameters()); } void NnetComputer::DebugBeforeExecute(int32 command, CommandDebugInfo *info) { { const std::vector<int32> &matrices_written = command_attributes_[command].matrices_written; size_t size = matrices_written.size(); info->matrices_written_stddevs.resize(size); for (size_t i = 0; i < size; i++) { int32 m = matrices_written[i]; info->matrices_written_stddevs[i] = MatrixStddev(matrices_[m]); } } { const std::vector<int32> &submatrices_written = command_attributes_[command].submatrices_written; size_t size = submatrices_written.size(); info->submatrices_written_stddevs.resize(size); for (size_t i = 0; i < size; i++) { int32 s = submatrices_written[i]; if (!computation_.IsWholeMatrix(s)) { const CuSubMatrix<BaseFloat> submat(GetSubMatrix(s)); info->submatrices_written_stddevs[i] = MatrixStddev(submat); } } } const NnetComputation::Command &c = computation_.commands[command]; if (c.command_type == kBackprop) { const Component *component = nnet_.GetComponent(c.arg1); if (component->Properties() & kUpdatableComponent) info->components_parameter_stddev = ParameterStddev(*component); } } void NnetComputer::DebugAfterExecute(int32 command, const CommandDebugInfo &info, double command_exec_time) { std::ostringstream os; os << command_strings_[command] << "\t|\t"; { const std::vector<int32> &matrices_written = command_attributes_[command].matrices_written; size_t size = matrices_written.size(); KALDI_ASSERT(info.matrices_written_stddevs.size() == size); for (size_t i = 0; i < size; i++) { int32 m = matrices_written[i]; BaseFloat old_stddev = info.matrices_written_stddevs[i], stddev = MatrixStddev(matrices_[m]); os << 'm' << m << ": " << old_stddev << "->" << stddev << " "; } } { const std::vector<int32> &submatrices_written = command_attributes_[command].submatrices_written; size_t size = submatrices_written.size(); KALDI_ASSERT(info.submatrices_written_stddevs.size() == size); for (size_t i = 0; i < size; i++) { int32 s = submatrices_written[i]; if (!computation_.IsWholeMatrix(s)) { const CuSubMatrix<BaseFloat> submat(GetSubMatrix(s)); BaseFloat old_stddev = info.submatrices_written_stddevs[i], stddev = MatrixStddev(submat); os << submatrix_strings_[s] << ": " << old_stddev << "->" << stddev << " "; } } } const NnetComputation::Command &c = computation_.commands[command]; if (c.command_type == kBackprop) { const Component *component = nnet_.GetComponent(c.arg1); if (component->Properties() & kUpdatableComponent) { const std::string &component_name = nnet_.GetComponentName(c.arg1); os << component_name << ": " << info.components_parameter_stddev << "->" << ParameterStddev(*component) << " "; } } os << "\t|\t time: " << command_exec_time << " secs"; KALDI_LOG << os.str(); } void NnetComputer::SaveMemo(int32 memo_index, const Component &c, void *memo) { if (memo_index <= 0) { if (memo != NULL) { // memo was returned but is not needed. c.DeleteMemo(memo); } } else { if (memos_.size() <= static_cast<size_t>(memo_index)) memos_.resize(memo_index + 1, NULL); memos_[memo_index] = memo; } } void* NnetComputer::GetMemo(int32 memo_index) { if (memo_index == 0) { return NULL; } else { if (static_cast<size_t>(memo_index) >= memos_.size()) KALDI_ERR << "Memo requested that was not generated."; void *ans = memos_[memo_index]; memos_[memo_index] = NULL; return ans; } } NnetComputer::NnetComputer(const NnetComputer &other): options_(other.options_), computation_(other.computation_), nnet_(other.nnet_), program_counter_(other.program_counter_), pending_commands_(other.pending_commands_), nnet_to_store_stats_(other.nnet_to_store_stats_), nnet_to_update_(other.nnet_to_update_), debug_(other.debug_), command_attributes_(other.command_attributes_), submatrix_strings_(other.submatrix_strings_), command_strings_(other.command_strings_), matrices_(other.matrices_), memos_(other.memos_) { // Note: this is the same as the default copy constructor, except for the check below. if (!memos_.empty()) { KALDI_ERR << "You cannot use the copy constructor of NnetComputer if " "memos are used."; } } void NnetComputer::ExecuteCommand() { const NnetComputation::Command &c = computation_.commands[program_counter_]; int32 m1, m2; try { switch (c.command_type) { case kAllocMatrix: m1 = computation_.submatrices[c.arg1].matrix_index; matrices_[m1].Resize(computation_.matrices[m1].num_rows, computation_.matrices[m1].num_cols, kUndefined, computation_.matrices[m1].stride_type); break; case kDeallocMatrix: m1 = computation_.submatrices[c.arg1].matrix_index; matrices_[m1].Resize(0, 0); break; case kSwapMatrix: m1 = computation_.submatrices[c.arg1].matrix_index; m2 = computation_.submatrices[c.arg2].matrix_index; matrices_[m1].Swap(&(matrices_[m2])); break; case kSetConst: { CuSubMatrix<BaseFloat> s(GetSubMatrix(c.arg1)); if (c.alpha == 0.0) s.SetZero(); else s.Set(c.alpha); break; } case kPropagate: { const Component *component = nnet_.GetComponent(c.arg1); ComponentPrecomputedIndexes *indexes = computation_.component_precomputed_indexes[c.arg2].data; const CuSubMatrix<BaseFloat> input(GetSubMatrix(c.arg3)); CuSubMatrix<BaseFloat> output(GetSubMatrix(c.arg4)); void *memo = component->Propagate(indexes, input, &output); if (c.arg6) { // need to store stats. KALDI_ASSERT(nnet_to_store_stats_ != NULL); Component *stats_component = nnet_to_store_stats_->GetComponent(c.arg1); bool was_in_place = (c.arg3 == c.arg4); // if propagate was in-place, provide empty matrix and not 'input', as // input is no longer valid. const CuSubMatrix<BaseFloat> maybe_input( GetSubMatrix(was_in_place ? 0 : c.arg3)); stats_component->StoreStats(maybe_input, output, memo); } SaveMemo(c.arg5, *component, memo); break; } case kBackprop: case kBackpropNoModelUpdate: { std::ostringstream debug_str; KALDI_ASSERT(nnet_to_update_ != NULL); debug_str << nnet_.GetComponentName(c.arg1); const Component *component = nnet_.GetComponent(c.arg1); KALDI_ASSERT(!(computation_.need_model_derivative && !nnet_to_update_)); Component *upd_component = NULL; if (c.command_type == kBackprop) { // this block sets 'upd_component' Nnet *nnet_to_update; if (component->Properties()&kUpdatableComponent) { nnet_to_update = (computation_.need_model_derivative ? nnet_to_update_ : NULL); } else { // Some non-updatable components, such as CompositeComponent, store // stats in the backprop. For other types of non-updatable // component, this arg won't matter. nnet_to_update = nnet_to_store_stats_; } if (nnet_to_update) upd_component = nnet_to_update->GetComponent(c.arg1); } ComponentPrecomputedIndexes *indexes = computation_.component_precomputed_indexes[c.arg2].data; const CuSubMatrix<BaseFloat> in_value(GetSubMatrix(c.arg3)); const CuSubMatrix<BaseFloat> out_value(GetSubMatrix(c.arg4)); const CuSubMatrix<BaseFloat> out_deriv(GetSubMatrix(c.arg5)); CuSubMatrix<BaseFloat> in_deriv(GetSubMatrix(c.arg6)); void *memo = GetMemo(c.arg7); component->Backprop(debug_str.str(), indexes, in_value, out_value, out_deriv, memo, upd_component, c.arg6 == 0 ? NULL : &in_deriv); if (memo != NULL) component->DeleteMemo(memo); break; } case kMatrixCopy: { CuSubMatrix<BaseFloat> dest(GetSubMatrix(c.arg1)); const CuSubMatrix<BaseFloat> src(GetSubMatrix(c.arg2)); dest.CopyFromMat(src); if (c.alpha != 1.0) dest.Scale(c.alpha); // note: in principle in future we could write a // kernel which would do this in one operation. break; } case kMatrixAdd: { CuSubMatrix<BaseFloat> dest(GetSubMatrix(c.arg1)); const CuSubMatrix<BaseFloat> src(GetSubMatrix(c.arg2)); dest.AddMat(c.alpha, src); break; } case kAddRows: { CuSubMatrix<BaseFloat> dest(GetSubMatrix(c.arg1)); const CuSubMatrix<BaseFloat> src(GetSubMatrix(c.arg2)); const CuArray<int32> &indexes = computation_.indexes_cuda[c.arg3]; dest.AddRows(c.alpha, src, indexes); break; } case kCopyRows: { CuSubMatrix<BaseFloat> dest(GetSubMatrix(c.arg1)); const CuSubMatrix<BaseFloat> src(GetSubMatrix(c.arg2)); const CuArray<int32> &indexes = computation_.indexes_cuda[c.arg3]; BaseFloat alpha = c.alpha; if (alpha != 1.0) { // for now we're faking the 'alpha' thing because the CopyRows if (alpha == 0.0) break; // command doesn't take that argument. dest.Scale(1.0 / alpha); dest.CopyRows(src, indexes); dest.Scale(c.alpha); } else { dest.CopyRows(src, indexes); } break; } case kCopyRowsMulti: { CuSubMatrix<BaseFloat> dest(GetSubMatrix(c.arg1)); CuArray<const BaseFloat*> pointers; GetPointers(c.arg2, dest.NumCols(), &pointers); BaseFloat alpha = c.alpha; if (alpha != 1.0) { // for now we're faking the 'alpha' thing because the CopyRows if (alpha == 0.0) break; // command doesn't take that argument. dest.Scale(1.0 / alpha); dest.CopyRows(pointers); dest.Scale(c.alpha); } else { dest.CopyRows(pointers); } break; } case kCopyToRowsMulti: { // If c.alpha is not 1.0, this command is not supported. KALDI_ASSERT(c.alpha == 1.0); CuSubMatrix<BaseFloat> src(GetSubMatrix(c.arg1)); CuArray<BaseFloat*> pointers; GetPointers(c.arg2, src.NumCols(), &pointers); src.CopyToRows(pointers); break; } case kAddRowsMulti: { CuSubMatrix<BaseFloat> dest(GetSubMatrix(c.arg1)); CuArray<const BaseFloat*> pointers; GetPointers(c.arg2, dest.NumCols(), &pointers); dest.AddRows(c.alpha, pointers); break; } case kAddToRowsMulti: { CuSubMatrix<BaseFloat> src(GetSubMatrix(c.arg1)); CuArray<BaseFloat*> pointers; GetPointers(c.arg2, src.NumCols(), &pointers); src.AddToRows(c.alpha, pointers); break; } case kAddRowRanges: { CuSubMatrix<BaseFloat> dest(GetSubMatrix(c.arg1)); const CuSubMatrix<BaseFloat> src(GetSubMatrix(c.arg2)); const CuArray<Int32Pair> &pairs = computation_.indexes_ranges_cuda[c.arg3]; BaseFloat alpha = c.alpha; if (alpha != 1.0) { // for now we're faking the 'alpha' thing // because the AddRowRanges if (alpha == 0.0) break; // command doesn't take that argument. dest.Scale(1.0 / alpha); dest.AddRowRanges(src, pairs); dest.Scale(c.alpha); } else { dest.AddRowRanges(src, pairs); } break; } case kCompressMatrix: // This does nothing if CUDA is not in use. #if HAVE_CUDA == 1 if (CuDevice::Instantiate().Enabled()) { if (compressed_matrices_.empty()) compressed_matrices_.resize(matrices_.size(), NULL); int32 m = computation_.submatrices[c.arg1].matrix_index; KALDI_ASSERT(compressed_matrices_[m] == NULL && matrices_[m].NumRows() != 0); BaseFloat range = c.alpha; bool truncate = (c.arg3 != 0); compressed_matrices_[m] = NewCuCompressedMatrix( static_cast<CuCompressedMatrixType>(c.arg2), range, truncate); compressed_matrices_[m]->CopyFromMat(matrices_[m]); matrices_[m].Resize(0, 0); } #endif break; case kDecompressMatrix: #if HAVE_CUDA == 1 if (CuDevice::Instantiate().Enabled()) { int32 m = computation_.submatrices[c.arg1].matrix_index; CuCompressedMatrixBase *compressed_matrix = compressed_matrices_[m]; KALDI_ASSERT(compressed_matrix != NULL && matrices_[m].NumRows() == 0); matrices_[m].Resize(compressed_matrix->NumRows(), compressed_matrix->NumCols(), kUndefined, computation_.matrices[m].stride_type); compressed_matrix->CopyToMat(&(matrices_[m])); delete compressed_matrix; compressed_matrices_[m] = NULL; } #endif break; case kNoOperation: case kNoOperationPermanent: case kNoOperationMarker: case kNoOperationLabel: break; case kGotoLabel: KALDI_ASSERT(computation_.commands[c.arg1].command_type == kNoOperationLabel); program_counter_ = c.arg1; break; default: KALDI_ERR << "Invalid command in computation"; } } catch (...) { if (!debug_) { std::string preamble; computation_.GetCommandStrings(nnet_, &preamble, &command_strings_); KALDI_WARN << "Printing some background info since error was detected"; KALDI_LOG << preamble; for (int32 prev_c = 0; prev_c < program_counter_; prev_c++) KALDI_LOG << command_strings_[prev_c]; } // the following will re-throw the error, but now we've printed more info // about what went wrong. KALDI_ERR << "Error running command " << command_strings_[program_counter_]; } } CuSubMatrix<BaseFloat> NnetComputer::GetSubMatrix(int32 submatrix_index) { KALDI_PARANOID_ASSERT(static_cast<size_t>(submatrix_index) < computation_.submatrices.size()); const NnetComputation::SubMatrixInfo &info = computation_.submatrices[submatrix_index]; const CuMatrix<BaseFloat> &mat = matrices_[info.matrix_index]; return CuSubMatrix<BaseFloat>( mat, info.row_offset, info.num_rows, info.col_offset, info.num_cols); } void NnetComputer::GetPointers(int32 indexes_multi_index, int32 num_cols, CuArray<BaseFloat*> *pointers) { KALDI_ASSERT(static_cast<size_t>(indexes_multi_index) < computation_.indexes_multi.size()); const std::vector<std::pair<int32,int32> > &pairs = computation_.indexes_multi[indexes_multi_index]; int32 size = pairs.size(); std::vector<BaseFloat*> vec(size); // the map "lookup" maps from submatrix index to the Data() // pointer of that submatrix, and the corresponding Stride(). unordered_map<int32, std::pair<BaseFloat*, int32> > lookup; for (int32 i = 0; i < size; i++) { int32 submatrix_index = pairs[i].first, row = pairs[i].second; if (submatrix_index != -1) { unordered_map<int32, std::pair<BaseFloat*, int32> >::iterator iter = lookup.find(submatrix_index); if (iter == lookup.end()) { CuSubMatrix<BaseFloat> m = GetSubMatrix(submatrix_index); lookup[submatrix_index] = std::pair<BaseFloat*, int32>(m.Data(), m.Stride()); iter = lookup.find(submatrix_index); } BaseFloat *data = iter->second.first; int32 stride = iter->second.second; vec[i] = data + (row * stride); } else { // -1 is a marker that will be translated to NULL. vec[i] = NULL; } } #ifdef KALDI_PARANOID for (int32 i = 0; i < size; i += 30 + RandInt(0, 9)) { // Do a pseudo-random spot check that the row-indexes are not out of range. int32 submatrix_index = pairs[i].first, row = pairs[i].second; if (submatrix_index != -1) { CuSubMatrix<BaseFloat> m = GetSubMatrix(submatrix_index); KALDI_ASSERT(row >= 0 && row < m.NumRows() && num_cols == m.NumCols()); } } #endif pointers->CopyFromVec(vec); } void NnetComputer::GetPointers(int32 indexes_multi_index, int32 num_cols, CuArray<const BaseFloat*> *pointers) { GetPointers(indexes_multi_index, num_cols, reinterpret_cast<CuArray<BaseFloat*>*>(pointers)); } void NnetComputer::Run() { const std::vector<NnetComputation::Command> &c = computation_.commands; int32 num_commands = c.size(); if (program_counter_ >= num_commands) { computation_.Print(std::cerr, nnet_); KALDI_ERR << "Running computation that has finished: program-counter=" << program_counter_; } CheckNoPendingIo(); CommandDebugInfo info; Timer timer; double total_elapsed_previous = 0.0; for (; program_counter_ < num_commands; program_counter_++) { if (c[program_counter_].command_type == kAcceptInput || c[program_counter_].command_type == kProvideOutput) { // We have hit a part of the computation that requires user // interaction, e.g. the end of the forward or backward phase. break; } if (debug_) DebugBeforeExecute(program_counter_, &info); ExecuteCommand(); if (debug_) { double total_elapsed_now = timer.Elapsed(); DebugAfterExecute(program_counter_, info, total_elapsed_now - total_elapsed_previous); total_elapsed_previous = total_elapsed_now; } } } void NnetComputer::AcceptInput(const std::string &node_name, CuMatrix<BaseFloat> *input) { bool is_output = false; int32 matrix_index = GetIoMatrixIndex(node_name, is_output); const NnetComputation::MatrixInfo &matrix_info = computation_.matrices[matrix_index]; if (input->NumRows() != matrix_info.num_rows) { KALDI_ERR << "Num-rows mismatch for input '" << node_name << "': " << matrix_info.num_rows << " in computation-request, " << input->NumRows() << " provided."; } if (input->NumCols() != matrix_info.num_cols) { KALDI_ERR << "Num-cols mismatch for input '" << node_name << "': " << matrix_info.num_cols << " in computation-request, " << input->NumCols() << " provided."; } if (matrix_info.stride_type == kDefaultStride || input->Stride() == input->NumCols()) { matrices_[matrix_index].Swap(input); } else { matrices_[matrix_index].Resize(matrix_info.num_rows, matrix_info.num_cols, kUndefined, kStrideEqualNumCols); matrices_[matrix_index].CopyFromMat(*input); input->Resize(0, 0); } } const CuMatrixBase<BaseFloat> &NnetComputer::GetOutput( const std::string &node_name) { bool is_output = true; int32 matrix_index = GetIoMatrixIndex(node_name, is_output); KALDI_ASSERT(matrices_[matrix_index].NumRows() != 0); return matrices_[matrix_index]; } void NnetComputer::GetOutputDestructive(const std::string &node_name, CuMatrix<BaseFloat> *output) { bool is_output = true; int32 matrix_index = GetIoMatrixIndex(node_name, is_output); KALDI_ASSERT(matrices_[matrix_index].NumRows() != 0); matrices_[matrix_index].Swap(output); matrices_[matrix_index].Resize(0, 0); } void NnetComputer::CheckNoPendingIo() { const std::vector<NnetComputation::Command> &c = computation_.commands; while (program_counter_ < static_cast<int32>(c.size()) && (c[program_counter_].command_type == kAcceptInput || c[program_counter_].command_type == kProvideOutput)) { pending_commands_.push_back(program_counter_); program_counter_++; } for (size_t i = 0; i < pending_commands_.size(); i++) { // the order here doesn't really matter; we go from back to front // as it's more efficient, not that efficiency really matters here. int32 command = pending_commands_[i]; if (c[command].command_type == kAcceptInput) { // we can't ignore if we needed input from the user that hasn't been // provided. int32 node = c[command].arg2; KALDI_ERR << "Cannot run computation-- we did not get input for node '" << nnet_.GetNodeName(node) << "'"; } } pending_commands_.clear(); } int32 NnetComputer::GetIoMatrixIndex(const std::string &node_name, bool is_output) { const std::vector<NnetComputation::Command> &c = computation_.commands; int32 node_index = nnet_.GetNodeIndex(node_name); if (node_index == -1) KALDI_ERR << "No node named '" << node_name << "'in network."; // first make sure all the I/O commands that we immediately expect, are listed // in 'pending_commands_'. while (program_counter_ < static_cast<int32>(computation_.commands.size()) && ((c[program_counter_].command_type == kAcceptInput || c[program_counter_].command_type == kProvideOutput || c[program_counter_].command_type == kNoOperationMarker))) { if (c[program_counter_].command_type != kNoOperationMarker) pending_commands_.push_back(program_counter_); program_counter_++; } for (size_t i = 0; i < pending_commands_.size(); i++) { int32 command = pending_commands_[i]; bool this_command_is_output = (c[command].command_type == kProvideOutput); int32 this_submatrix_index = c[command].arg1, this_node_index = c[command].arg2; if (this_command_is_output == is_output && node_index == this_node_index) { if (!is_output) { pending_commands_.erase(pending_commands_.begin() + i); // don't erase the command for outputs, as that would prevent things // from being output twice, which is an unnecessary restriction. } if (!(computation_.IsWholeMatrix(this_submatrix_index))) KALDI_ERR << "Getting input or output that is not a whole matrix " << "(probably some optimization code needs to be changed)"; return computation_.submatrices[this_submatrix_index].matrix_index; } } // if you get the following error it will likely be a bug in the calling code, // or possibly due to giving the wrong egs. KALDI_ERR << "Could not " << (is_output ? "provide output " : "accept input ") << "for network node " << node_name << " (it is not expected at this point in the computation)"; return 0; // Suppress compiler warnings; this line will never be reached. } void NnetComputer::AcceptInputs(const Nnet &nnet, const std::vector<NnetIo> &io_vec) { for (size_t i = 0; i < io_vec.size(); i++) { const NnetIo &io = io_vec[i]; int32 node_index = nnet.GetNodeIndex(io.name); if (node_index == -1) KALDI_ERR << "No node named '" << io.name << "' in nnet."; if (nnet.IsInputNode(node_index)) { CuMatrix<BaseFloat> cu_input(io.features.NumRows(), io.features.NumCols(), kUndefined); cu_input.CopyFromGeneralMat(io.features); this->AcceptInput(io.name, &cu_input); } } } NnetComputer::~NnetComputer() { // Delete any pointers that are present in compressed_matrices_. Actually // they should all already have been deallocated and set to NULL if the // compuation was run to completion; we do this in case someone ran // the forward propagation but not the backprop. for (size_t i = 0; i < compressed_matrices_.size(); i++) delete compressed_matrices_[i]; } } // namespace nnet3 } // namespace kaldi |