Blame view

src/nnet3/nnet-compute.h 10.1 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
  // nnet3/nnet-compute.h
  
  // Copyright   2012-2015  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #ifndef KALDI_NNET3_NNET_COMPUTE_H_
  #define KALDI_NNET3_NNET_COMPUTE_H_
  
  #include "nnet3/nnet-common.h"
  #include "nnet3/nnet-nnet.h"
  #include "nnet3/nnet-computation.h"
  #include "nnet3/nnet-analyze.h"
  #include "nnet3/nnet-example.h"
  
  #include <iostream>
  #include <sstream>
  #include <vector>
  #include <map>
  
  
  namespace kaldi {
  namespace nnet3 {
  
  
  struct NnetComputeOptions {
    bool debug;
    NnetComputeOptions(): debug(false) { }
    void Register(OptionsItf *opts) {
      opts->Register("debug", &debug, "If true, turn on "
                     "debug for the neural net computation (very verbose!) "
                     "Will be turned on regardless if --verbose >= 5");
    }
  
  };
  
  
  /**
    class NnetComputer is responsible for executing the computation described in the
    "computation" object.
  
    You call in sequence, the constructor, then AcceptInput() [or AcceptInputs()],
    then Run(), then GetOutput() [and if applicable, AcceptOutputDeriv], then if
    there is a backward computation, Run() [then, if applicable, GetInputDeriv()].
   */
  class NnetComputer {
   public:
    /// Constructor.  nnet_to_update will be NULL if you are not doing
    /// model update or model-derivative computation.
    /// You must call computation.ComputeCudaIndexes()  before calling
    /// this function.
    ///
    /// Caution: there is another constructor that takes a pointer for
    /// 'nnet', be careful not to mix these up.
    NnetComputer(const NnetComputeOptions &options,
                 const NnetComputation &computation,
                 const Nnet &nnet,
                 Nnet *nnet_to_update);
  
    /// This version of the constructor accepts a pointer to 'nnet' instead
    /// of a const reference.  The difference is that this version will,
    /// for storing statistics (the StoreStats() function of class Component),
    /// use 'nnet' instead of 'nnet_to_update' (if specified).
    NnetComputer(const NnetComputeOptions &options,
                 const NnetComputation &computation,
                 Nnet *nnet,
                 Nnet *nnet_to_update);
  
  
    /// Copy constructor.  May not be used if memos are stored with this object
    /// (which is only a possibility if backprop will take place, and in these
    /// situations you won't normally be wanting to use the copy constructor
    /// anyway; the copy constructor is more useful for things like RNNLM lattice
    /// rescoring).
    NnetComputer(const NnetComputer &other);
  
    /// e.g. AcceptInput ("input", &input_mat), or for derivatives w.r.t. the
    /// output, AcceptInput("output", output_deriv_mat).  Will crash if there is
    /// no input or output node with the given name.  This function is destructive
    /// of "input" as it takes it using the Swap function of CuMatrix.  Must have
    /// the same number of rows as the corresponding input described in the
    /// ComputationRequest e.g. the indexes.size() in the corresponding
    /// IoSpecification.
    void AcceptInput(const std::string &node_name,
                     CuMatrix<BaseFloat> *input);
  
    /// This convenience function calls AcceptInput() in turn on all the inputs in
    /// the training example.  It needs "nnet" only in order to distinguish inputs
    /// from outputs.
    void AcceptInputs(const Nnet &nnet,
                      const std::vector<NnetIo> &io);
  
  
    /// This does either the forward or backward computation, depending
    /// when it is called (in a typical computation, the first time you call
    /// this it will do the forward computation; then you'll take the outputs
    /// and provide derivatives; and the second time you call it, it will do
    /// the backward computation.  There used to be two separate functions
    /// Forward() and Backward().
    void Run();
  
    // e.g. GetOutput("output").  This function can also be used to get
    // derivatives w.r.t. inputs.  It's non-const because it may only
    // be called once and it keeps track of that.
    const CuMatrixBase<BaseFloat> &GetOutput(const std::string &node_name);
  
    // Version of GetOutput that calls Swap(), destroying the output stored inside
    // this object.  You should probably not use this if you plan to call
    // Backward() on the same NnetComputer object, or it's a recurrent
    // computation-- it may lead to a crash.
    void GetOutputDestructive(const std::string &output_name,
                              CuMatrix<BaseFloat> *output);
  
  
    ~NnetComputer();
   private:
    void Init(); // called from constructors.
  
    const NnetComputeOptions &options_;
    const NnetComputation &computation_;
    const Nnet &nnet_;
  
    int32 program_counter_;  // command index to execute next.
    // To deal with inputs and outputs that are not provided/taken by the user in
    // the same order as listed in the computation, pending_commands_ contains a
    // list of program commands that were skipped over but are in the queue to be
    // executed.
    std::vector<int32> pending_commands_;
  
    // A pointer to the copy of the nnet which we'll be using for stats
    // accumulation (the StoreStats() function).  May be NULL or the same
    // as nnet_ or nnet_to_update_.
    Nnet *nnet_to_store_stats_;
    // A pointer to the copy of the nnet which we'll be updating the parameters
    // of (nnet_to_update in the backprop function).  May be NULL and usually
    // will not be the same as nnet_.
    Nnet *nnet_to_update_;
    bool debug_;
    // command_attributes_ is only used if debug_=true.
    std::vector<CommandAttributes> command_attributes_;
    // submatrix_strings_ is only used if debug_=true.
    std::vector<std::string> submatrix_strings_;
    // command_strings_ is only used if debug_=true, or in case of error.
    std::vector<std::string> command_strings_;
  
    // The matrices used in the computation.
    std::vector<CuMatrix<BaseFloat> > matrices_;
  
    // Memos returned by Propagate() that must be passed to the corresponding
    // Backprop() routines, indexed by memo-index (zeroth element always
    // NULL).
    std::vector<void*> memos_;
  
    // This is only used when commands kCompressMatrix and kDecompressMatrix are
    // invoked.  It will be (the first time we compress a matrix) resized to be
    // the same size as 'matrices_' (i.e., indexed by matrix index).  When we
    // compress a matrix m we set compressed_matrices_[m] to a non-NULL value and
    // resize matrices_[m] to empty; and when we uncompress it, the reverse
    // happens.
    std::vector<CuCompressedMatrixBase*> compressed_matrices_;
  
  
    // executes the command in computation_.commands[program_counter_].
    void ExecuteCommand();
  
    // Returns the matrix index where the input (if is_output==false) or output
    // matrix index for "node_name" is stored.  This looks at the next command (at
    // program_counter_) and in pending_commands_, and sees whether we were
    // expecting any input or output for this node, and if there is a match,
    // returns it and "consumes" the command by either advancing program_counter_
    // or consuming something from pending_commands_.
    // If there is not a match (i.e. we were not expecting this type of I/O
    // at this point in the computation), it prints an error and dies.
    int32 GetIoMatrixIndex(const std::string &node_name, bool is_output);
  
  
    // This function, called from Run(), checks that there is no pending I/O
    // that we were waiting for, that would block the running of the
    // computation; it crashes if there was pending input, and ignores and
    // skips over any pending output.
    void CheckNoPendingIo();
  
    CuSubMatrix<BaseFloat> GetSubMatrix(int32 submatrix_index);
  
    void GetPointers(int32 indexes_multi_index,
                     int32 num_cols,
                     CuArray<BaseFloat*> *pointers);
    void GetPointers(int32 indexes_multi_index,
                     int32 num_cols,
                     CuArray<const BaseFloat*> *pointers);
  
    struct CommandDebugInfo {
      // Uncentered standard deviations of elements of all matrices that this
      // command writes.  Dimension is the same as
      // command_attributes_[c].matrices_written
      std::vector<BaseFloat> matrices_written_stddevs;
      // Uncentered standard deviations of elements of all submatrices that this
      // command writes (if they are not whole matrices).  Dimension is the same
      // as command_attributes_[c].submatrices_written
      std::vector<BaseFloat> submatrices_written_stddevs;
  
      // Uncentered standard deviation of parameters of the component (if any)
      // that is updated by this command.
      BaseFloat components_parameter_stddev;
    };
    // Used in debugging code
    static BaseFloat MatrixStddev(const CuMatrixBase<BaseFloat> &m);
    // Used in debugging code
    static BaseFloat ParameterStddev(const Component &c);
  
    // only non-const because of the way GetSubMatrix works.
    void DebugBeforeExecute(int32 command,
                            CommandDebugInfo *info);
    // only non-const because of the way GetSubMatrix works.
    void DebugAfterExecute(int32 command,
                           const CommandDebugInfo &info,
                           double command_execution_time);
  
    // simple helper function used in executing Propagate().
    // saves 'memo' at memo-index 'memo_index'; if memo
    // is non-NULL and memo_index is 0, it is an error.
    inline void SaveMemo(int32 memo_index, const Component &c, void *memo);
  
    // simple helper function used in executing Backprop().
    // Retrieves memo from 'memo_index' (or returns NULL if
    // memo_index = 0), and sets that value to NULL as
    // memos are not reusable.
    inline void *GetMemo(int32 memo_index);
  
    NnetComputer &operator = (const NnetComputer &other);  // Disallow.
  };
  
  
  
  } // namespace nnet3
  } // namespace kaldi
  
  #endif