Blame view
src/nnet3/nnet-derivative-test.cc
16.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
// nnet3/nnet-derivative-test.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet3/nnet-nnet.h" #include "nnet3/nnet-compile.h" #include "nnet3/nnet-analyze.h" #include "nnet3/nnet-test-utils.h" #include "nnet3/nnet-optimize.h" #include "nnet3/nnet-compute.h" namespace kaldi { namespace nnet3 { void ComputeMinAndMaxTimes(const std::vector<Index> &indexes, int32 *min_t, int32 *max_t) { KALDI_ASSERT(!indexes.empty()); *min_t = indexes[0].t; *max_t = *min_t; for (int32 n = 1; n < static_cast<int32>(indexes.size()); n++) { *min_t = std::min(*min_t, indexes[n].t); *max_t = std::max(*max_t, indexes[n].t); } } // This function is called if you want to set min_deriv_time and max_deriv_time. // It works out some meaningful values to set, based on the config. void SetDerivTimesOptions(const ComputationRequest &request, NnetOptimizeOptions *opt_config) { int32 min_t, max_t; KALDI_ASSERT(request.inputs[0].name == "input"); const std::vector<Index> &input_indexes = request.inputs[0].indexes; ComputeMinAndMaxTimes(input_indexes, &min_t, &max_t); int32 orig_min_t = min_t, orig_max_t = max_t; int t_length = max_t + 1 - min_t; KALDI_ASSERT(t_length > 0); if (t_length == 1) return; if (RandInt(0, 2) == 0) { // remove as much as 4 frames from the left (but don't remove everything). min_t += std::min(4, RandInt(0, t_length - 1)); opt_config->min_deriv_time = min_t; t_length = max_t + 1 - min_t; KALDI_ASSERT(t_length > 0); } if (RandInt(0, 2) == 0) { max_t -= std::min(4, RandInt(0, t_length - 1)); opt_config->max_deriv_time = max_t; t_length = max_t + 1 - min_t; KALDI_ASSERT(t_length > 0); } if (RandInt(0, 4) == 0) { // ensure that all derivs will be pruned away; // this tests more code. min_t = orig_min_t - 10; max_t = min_t + 1; } int32 output_min_t, output_max_t; KALDI_ASSERT(request.outputs[0].name == "output"); ComputeMinAndMaxTimes(request.outputs[0].indexes, &output_min_t, &output_max_t); KALDI_LOG << "ComputationRequest has output (min,max) = (" << output_min_t << ',' << output_max_t << "), input (min,max) = (" << orig_min_t << ',' << orig_max_t << "), limiting deriv times to (" << opt_config->min_deriv_time << ',' << opt_config->max_deriv_time << ')'; } // This test makes sure that the model-derivatives are correct. void UnitTestNnetModelDerivatives() { int32 N = 20; for (int32 n = 0; n < N; n++) { struct NnetGenerationOptions gen_config; //gen_config.allow_nonlinearity = false; //gen_config.allow_recursion = false; //gen_config.allow_final_nonlinearity = true; bool limit_deriv_times = (RandInt(0, 2) == 0); std::vector<std::string> configs; GenerateConfigSequence(gen_config, &configs); Nnet nnet; for (size_t j = 0; j < configs.size(); j++) { KALDI_LOG << "Input config[" << j << "] is: " << configs[j]; std::istringstream is(configs[j]); nnet.ReadConfig(is); } ComputationRequest request; std::vector<Matrix<BaseFloat> > inputs; ComputeExampleComputationRequestSimple(nnet, &request, &inputs); // make sure that a model-derivative is requested, and an output-derivative // is supplied. request.need_model_derivative = true; request.outputs[0].has_deriv = true; // whether input-derivatives are required or not does not matter, // so leave it as it is in that regard. NnetOptimizeOptions optimize_opts; CachingOptimizingCompilerOptions compiler_opts; if (limit_deriv_times) { SetDerivTimesOptions(request, &optimize_opts); } CachingOptimizingCompiler compiler(nnet, optimize_opts, compiler_opts); const NnetComputation &computation = *(compiler.Compile(request)); { std::ostringstream os; computation.Print(os, nnet); KALDI_LOG << "Optimized computation is: " << os.str(); } Nnet nnet_deriv(nnet); ScaleNnet(0.0, &nnet_deriv); SetNnetAsGradient(&nnet_deriv); // forces "simple" update and unit // learning rate. int32 num_directions = 4; // must be >= 1. Best if it's >1, will reduce // the probability of random failures. // the order of these vectors is: // [ un-perturbed, perturbed-1, perturbed-2, perturbed-3 ]. std::vector<BaseFloat> measured_objf(num_directions + 1, 0.0), predicted_objf_change(num_directions + 1, 0.0); BaseFloat delta = 5.0e-04; // output_deriv is the derivative of the objective function w.r.t. the // (single) output. We make the objf a linear function of the output and // just set the output_deriv to be a random matrix, which defines the // objective function. CuMatrix<BaseFloat> output_deriv; output_deriv.Resize(request.outputs[0].indexes.size(), nnet.OutputDim("output")); output_deriv.SetRandn(); NnetComputeOptions compute_opts; if (RandInt(0, 1) == 0) compute_opts.debug = true; // pass 0 is the forward pass with the un-perturbed model. // Other passes are with various differently-perturbed versions of // the model. for (int32 pass = 0; pass <= num_directions; pass++) { Nnet nnet_copy(nnet); if (pass > 0) PerturbParams(delta, &nnet_copy); NnetComputer computer(compute_opts, computation, nnet_copy, (pass == 0 ? &nnet_deriv : &nnet_copy)); // provide the input to the computation. for (size_t i = 0; i < request.inputs.size(); i++) { CuMatrix<BaseFloat> temp(inputs[i]); computer.AcceptInput(request.inputs[i].name, &temp); } KALDI_LOG << "Running forward computation"; computer.Run(); const CuMatrixBase<BaseFloat> &output(computer.GetOutput("output")); KALDI_LOG << "Output sum for pass " << pass << " is " << output.Sum(); BaseFloat objf = TraceMatMat(output, output_deriv, kTrans); measured_objf[pass] = objf; if (pass == 0) { // we need to do the backward computation (to get the model derivative) CuMatrix<BaseFloat> temp(output_deriv); computer.AcceptInput("output", &temp); KALDI_LOG << "Running backward computation"; computer.Run(); } else { // work out the predicted objf-change as dot-product of deriv and // parameter-change. The expression below can be interpreted as // DotProduct(nnet_copy - nnet, nnet_deriv). predicted_objf_change[pass] = DotProduct(nnet_copy, nnet_deriv) - DotProduct(nnet, nnet_deriv); } } Vector<BaseFloat> predicted_objf_change_vec(num_directions), measured_objf_change_vec(num_directions); for (int32 d = 0; d < num_directions; d++) { BaseFloat predicted_change = predicted_objf_change[d+1], measured_change = measured_objf[d+1] - measured_objf[0]; predicted_objf_change_vec(d) = predicted_change; measured_objf_change_vec(d) = measured_change; } KALDI_LOG << "Vector of predicted objf-change is: " << predicted_objf_change_vec; KALDI_LOG << "Vector of measured objf-change is: " << measured_objf_change_vec; BaseFloat delta_thresh_warn = 0.05, delta_thresh_fail = 0.25; if (limit_deriv_times) { KALDI_LOG << "Not checking that predicted/measured changes matched " << "because we limited times of derivatives."; } else { if (!ApproxEqual(predicted_objf_change_vec, measured_objf_change_vec, delta_thresh_fail)) { if (NnetIsRecurrent(nnet)) { KALDI_WARN << "Predicted and measured objf-changes differ too much. " << "(would normally be beyond error threshold, but this " << "nnet is recurrent, so letting it pass."; } else { KALDI_ERR << "Predicted and measured objf-changes differ too much."; } } if (!ApproxEqual(predicted_objf_change_vec, measured_objf_change_vec, delta_thresh_warn)) { KALDI_WARN << "Predicted and measured objf-changes differ quite a lot."; } } } } // This test makes sure that the input-derivatives are correct. void UnitTestNnetInputDerivatives() { int32 N = 20; for (int32 n = 0; n < N; n++) { struct NnetGenerationOptions gen_config; //gen_config.allow_nonlinearity = false; //gen_config.allow_recursion = false; //gen_config.allow_final_nonlinearity = true; bool allow_optimization = true; std::vector<std::string> configs; GenerateConfigSequence(gen_config, &configs); Nnet nnet; for (size_t j = 0; j < configs.size(); j++) { KALDI_LOG << "Input config[" << j << "] is: " << configs[j]; std::istringstream is(configs[j]); nnet.ReadConfig(is); } ComputationRequest request; std::vector<Matrix<BaseFloat> > inputs; ComputeExampleComputationRequestSimple(nnet, &request, &inputs); // make sure that all inputs and outputs have derivatives requested/provided, // and that the model-update (need_model_derivative) is not requested. request.need_model_derivative = false; for (int32 i = 0; i < request.inputs.size(); i++) request.inputs[i].has_deriv = true; request.outputs[0].has_deriv = true; NnetComputation computation; Compiler compiler(request, nnet); CompilerOptions opts; compiler.CreateComputation(opts, &computation); { std::ostringstream os; computation.Print(os, nnet); KALDI_LOG << "Generated computation is: " << os.str(); } CheckComputationOptions check_config; // we can do the rewrite check since it's before optimization. check_config.check_rewrite = true; ComputationChecker checker(check_config, nnet, computation); checker.Check(); if (RandInt(0, 3) != 0 && allow_optimization) { NnetOptimizeOptions opt_config; // opt_config.initialize_undefined = false; // temp Optimize(opt_config, nnet, MaxOutputTimeInRequest(request), &computation); std::ostringstream os; computation.Print(os, nnet); KALDI_LOG << "Optimized computation is: " << os.str(); } NnetComputeOptions compute_opts; if (RandInt(0, 1) == 0) compute_opts.debug = true; computation.ComputeCudaIndexes(); int32 num_directions = 3; // must be >= 1. Best if it's >1, will reduce // the probability of random failures. // the order of these vectors is: // [ un-perturbed, perturbed-1, perturbed-2, perturbed-3, un-perturbed ]. // we compute un-perturbed twice to double-check the model did not change. std::vector<BaseFloat> measured_objf(num_directions + 2, 0.0), predicted_objf_change(num_directions + 2, 0.0); BaseFloat delta = 1.0e-03; // output_deriv is the derivative of the objective function w.r.t. the // (single) output. We make the objf a linear function of the output and // just set the output_deriv to be a random matrix, which defines the // objective function. CuMatrix<BaseFloat> output_deriv; output_deriv.Resize(request.outputs[0].indexes.size(), nnet.OutputDim("output")); output_deriv.SetRandn(); std::vector<CuMatrix<BaseFloat> > delta_inputs(inputs.size()); std::vector<CuMatrix<BaseFloat> > input_derivs(inputs.size()); // pass 0 is the forward pass with the un-perturbed features; so is // pass num_directions + 1. // Other passes are with various differently-perturbed versions of // the features. for (int32 pass = 0; pass <= num_directions + 1; pass++) { // the only reason we might need to provide the &nnet parameter is if the // StoreStats() operation had been requested. We made sure no model update // is being performed. NnetComputer computer(compute_opts, computation, nnet, &nnet); // provide the input to the computations. for (size_t i = 0; i < request.inputs.size(); i++) { CuMatrix<BaseFloat> temp(inputs[i]); if (pass > 0 && pass <= num_directions) { // Perturb the input randomly. delta_inputs[i].Resize(inputs[i].NumRows(), inputs[i].NumCols()); delta_inputs[i].SetRandn(); delta_inputs[i].Scale(delta); // if there are >1 inputs, sometimes set the delta for input 0 to // zero. might sometimes give more accurate test of error in iVector // derivative computation. if (i == 0 && request.inputs.size() > 1 && RandInt(0, 1) == 0) delta_inputs[i].SetZero(); temp.AddMat(1.0, delta_inputs[i]); predicted_objf_change[pass] += TraceMatMat(input_derivs[i], delta_inputs[i], kTrans); } computer.AcceptInput(request.inputs[i].name, &temp); } KALDI_LOG << "Running forward computation"; computer.Run(); const CuMatrixBase<BaseFloat> &output(computer.GetOutput("output")); KALDI_LOG << "Output sum for pass " << pass << " is " << output.Sum(); BaseFloat objf = TraceMatMat(output, output_deriv, kTrans); measured_objf[pass] = objf; if (pass == 0) { // We need to compute the input derivatives. CuMatrix<BaseFloat> temp(output_deriv); computer.AcceptInput("output", &temp); KALDI_LOG << "Running backward computation"; computer.Run(); for (size_t i = 0; i < request.inputs.size(); i++) { input_derivs[i] = computer.GetOutput(request.inputs[i].name); KALDI_LOG << "Input-deriv norm for '" << request.inputs[i].name << "' is " << input_derivs[i].FrobeniusNorm(); } } } KALDI_ASSERT(ApproxEqual(measured_objf[0], measured_objf[num_directions + 1])); Vector<BaseFloat> predicted_objf_change_vec(num_directions), measured_objf_change_vec(num_directions); for (int32 d = 0; d < num_directions; d++) { BaseFloat predicted_change = predicted_objf_change[d+1], measured_change = measured_objf[d+1] - measured_objf[0]; predicted_objf_change_vec(d) = predicted_change; measured_objf_change_vec(d) = measured_change; } KALDI_LOG << "Vector of predicted objf-change is: " << predicted_objf_change_vec; KALDI_LOG << "Vector of measured objf-change is: " << measured_objf_change_vec; BaseFloat delta_thresh_warn = 0.05, delta_thresh_fail = 0.25; if (!ApproxEqual(predicted_objf_change_vec, measured_objf_change_vec, delta_thresh_fail)) { if (NnetIsRecurrent(nnet)) { KALDI_WARN << "Predicted and measured objf-changes differ too much. " << "(would normally be beyond error threshold, but this " << "nnet is recurrent, so letting it pass."; } else { KALDI_ERR << "Predicted and measured objf-changes differ too much."; } } else if (!ApproxEqual(predicted_objf_change_vec, measured_objf_change_vec, delta_thresh_warn)) { KALDI_WARN << "Predicted and measured objf-changes differ quite a lot"; } } } } // namespace nnet3 } // namespace kaldi int main() { using namespace kaldi; using namespace kaldi::nnet3; SetVerboseLevel(3); #if HAVE_CUDA == 1 kaldi::int32 loop = 0; for (loop = 0; loop < 2; loop++) { CuDevice::Instantiate().SetDebugStrideMode(true); if (loop == 0) CuDevice::Instantiate().SelectGpuId("no"); else CuDevice::Instantiate().SelectGpuId("yes"); #endif UnitTestNnetModelDerivatives(); UnitTestNnetInputDerivatives(); #if HAVE_CUDA == 1 } // No for loop if 'HAVE_CUDA != 1', CuDevice::Instantiate().PrintProfile(); #endif KALDI_LOG << "Nnet derivative tests succeeded."; return 0; } |