Blame view

src/nnet3/nnet-discriminative-diagnostics.h 3.08 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
  // nnet3/nnet-discriminative-diagnostics.h
  
  // Copyright    2012-2015  Johns Hopkins University (author: Daniel Povey)
  // Copyright    2014-2015  Vimal Manohar
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #ifndef KALDI_NNET3_NNET_DISCRIMINATIVE_DIAGNOSTICS_H_
  #define KALDI_NNET3_NNET_DISCRIMINATIVE_DIAGNOSTICS_H_
  
  #include "nnet3/nnet-example.h"
  #include "nnet3/nnet-computation.h"
  #include "nnet3/nnet-compute.h"
  #include "nnet3/nnet-optimize.h"
  #include "nnet3/nnet-discriminative-example.h"
  #include "nnet3/nnet-diagnostics.h"
  #include "nnet3/discriminative-training.h"
  
  namespace kaldi {
  namespace nnet3 {
  
  /** This class is for computing objective-function values in a nnet3 
      discriminative training, for diagnostics.  It also supports computing model
      derivatives.
   */
  class NnetDiscriminativeComputeObjf {
   public:
    // does not store a reference to 'config' but does store one to 'nnet'.
    NnetDiscriminativeComputeObjf(const NnetComputeProbOptions &nnet_config,
        const discriminative::DiscriminativeOptions &discriminative_config,
        const TransitionModel &tmodel,
        const VectorBase<BaseFloat> &priors,
        const Nnet &nnet);
  
    // Reset the likelihood stats, and the derivative stats (if computed).
    void Reset();
  
    // compute objective on one minibatch.
    void Compute(const NnetDiscriminativeExample &eg);
  
    // Prints out the final stats, and return true if there was a nonzero count.
    bool PrintTotalStats() const;
  
    // returns the objective-function info for this output name (e.g. "output"),
    // or NULL if there is no such info.
    const discriminative::DiscriminativeObjectiveInfo *GetObjective(
        const std::string &output_name) const;
  
    // if config.compute_deriv == true, returns a reference to the
    // computed derivative.  Otherwise crashes.
    const Nnet &GetDeriv() const;
    
    ~NnetDiscriminativeComputeObjf();
   private:
    void ProcessOutputs(const NnetDiscriminativeExample &eg,
                        NnetComputer *computer);
  
    NnetComputeProbOptions nnet_config_;
  
    discriminative::DiscriminativeOptions discriminative_config_;
    const TransitionModel &tmodel_;
    CuVector<BaseFloat> log_priors_;
    const Nnet &nnet_;
    CachingOptimizingCompiler compiler_;
    Nnet *deriv_nnet_;
    int32 num_minibatches_processed_;  // this is only for diagnostics
  
    unordered_map<std::string, discriminative::DiscriminativeObjectiveInfo, StringHasher> objf_info_;
  };
  
  } // namespace nnet3
  } // namespace kaldi
  
  #endif // KALDI_NNET3_NNET_DISCRIMINATIVE_DIAGNOSTICS_H_