Blame view

src/nnet3/nnet-discriminative-example.cc 21 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
  // nnet3/nnet-discriminative-example.cc
  
  // Copyright      2015    Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <cmath>
  #include "nnet3/nnet-discriminative-example.h"
  #include "nnet3/nnet-example-utils.h"
  
  namespace kaldi {
  namespace nnet3 {
  
  
  void NnetDiscriminativeSupervision::Write(std::ostream &os, bool binary) const {
    CheckDim();
    WriteToken(os, binary, "<NnetDiscriminativeSup>");
    WriteToken(os, binary, name);
    WriteIndexVector(os, binary, indexes);
    supervision.Write(os, binary);
    WriteToken(os, binary, "<DW>");  // for DerivWeights.  Want to save space.
    WriteVectorAsChar(os, binary, deriv_weights);
    WriteToken(os, binary, "</NnetDiscriminativeSup>");
  }
  
  bool NnetDiscriminativeSupervision::operator == (const NnetDiscriminativeSupervision &other) const {
    return name == other.name && indexes == other.indexes &&
        supervision == other.supervision &&
        deriv_weights.ApproxEqual(other.deriv_weights);
  }
  
  void NnetDiscriminativeSupervision::Read(std::istream &is, bool binary) {
    ExpectToken(is, binary, "<NnetDiscriminativeSup>");
    ReadToken(is, binary, &name);
    ReadIndexVector(is, binary, &indexes);
    supervision.Read(is, binary);
    ExpectToken(is, binary, "<DW>");
    ReadVectorAsChar(is, binary, &deriv_weights);
    ExpectToken(is, binary, "</NnetDiscriminativeSup>");
    CheckDim();
  }
  
  
  void NnetDiscriminativeSupervision::CheckDim() const {
    if (supervision.frames_per_sequence == -1) {
      // this object has not been set up.
      KALDI_ASSERT(indexes.empty());
      return;
    }
    KALDI_ASSERT(indexes.size() == supervision.num_sequences *
                 supervision.frames_per_sequence && !indexes.empty() &&
                 supervision.frames_per_sequence > 1);
    int32 first_frame = indexes[0].t,
        frame_skip = indexes[supervision.num_sequences].t - first_frame,
        num_sequences = supervision.num_sequences,
        frames_per_sequence = supervision.frames_per_sequence;
    int32 k = 0;
    for (int32 i = 0; i < frames_per_sequence; i++) {
      for (int32 j = 0; j < num_sequences; j++,k++) {
        int32 n = j, t = i * frame_skip + first_frame, x = 0;
        Index index(n, t, x);
        KALDI_ASSERT(indexes[k] == index);
      }
    }
    if (deriv_weights.Dim() != 0) {
      KALDI_ASSERT(deriv_weights.Dim() == indexes.size());
      KALDI_ASSERT(deriv_weights.Min() >= 0.0 &&
                   deriv_weights.Max() <= 1.0);
    }
  }
  
  NnetDiscriminativeSupervision::NnetDiscriminativeSupervision(const NnetDiscriminativeSupervision &other):
      name(other.name),
      indexes(other.indexes),
      supervision(other.supervision),
      deriv_weights(other.deriv_weights) { CheckDim(); }
  
  NnetDiscriminativeSupervision::NnetDiscriminativeSupervision(
      const std::string &name,
      const discriminative::DiscriminativeSupervision &supervision,
      const VectorBase<BaseFloat> &deriv_weights,
      int32 first_frame,
      int32 frame_skip):
      name(name),
      supervision(supervision),
      deriv_weights(deriv_weights) {
    // note: this will set the 'x' index to zero.
    indexes.resize(supervision.num_sequences *
                   supervision.frames_per_sequence);
    int32 k = 0, num_sequences = supervision.num_sequences,
        frames_per_sequence = supervision.frames_per_sequence;
    for (int32 i = 0; i < frames_per_sequence; i++) {
      for (int32 j = 0; j < num_sequences; j++,k++) {
        indexes[k].n = j;
        indexes[k].t = i * frame_skip + first_frame;
      }
    }
    KALDI_ASSERT(k == indexes.size());
    CheckDim();
  }
  
  void NnetDiscriminativeSupervision::Swap(NnetDiscriminativeSupervision *other) {
    name.swap(other->name);
    indexes.swap(other->indexes);
    supervision.Swap(&(other->supervision));
    deriv_weights.Swap(&(other->deriv_weights));
    if (RandInt(0, 5) == 0)
      CheckDim();
  }
  
  
  void NnetDiscriminativeExample::Write(std::ostream &os, bool binary) const {
    // Note: weight, label, input_frames and spk_info are members.  This is a
    // struct.
    WriteToken(os, binary, "<Nnet3DiscriminativeEg>");
    WriteToken(os, binary, "<NumInputs>");
    int32 size = inputs.size();
    WriteBasicType(os, binary, size);
    KALDI_ASSERT(size > 0 && "Attempting to write NnetDiscriminativeExample with no inputs");
    if (!binary) os << '
  ';
    for (int32 i = 0; i < size; i++) {
      inputs[i].Write(os, binary);
      if (!binary) os << '
  ';
    }
    WriteToken(os, binary, "<NumOutputs>");
    size = outputs.size();
    WriteBasicType(os, binary, size);
    KALDI_ASSERT(size > 0 && "Attempting to write NnetDiscriminativeExample with no outputs");
    if (!binary) os << '
  ';
    for (int32 i = 0; i < size; i++) {
      outputs[i].Write(os, binary);
      if (!binary) os << '
  ';
    }
    WriteToken(os, binary, "</Nnet3DiscriminativeEg>");
  }
  
  void NnetDiscriminativeExample::Read(std::istream &is, bool binary) {
    ExpectToken(is, binary, "<Nnet3DiscriminativeEg>");
    ExpectToken(is, binary, "<NumInputs>");
    int32 size;
    ReadBasicType(is, binary, &size);
    if (size < 1 || size > 1000000)
      KALDI_ERR << "Invalid size " << size;
    inputs.resize(size);
    for (int32 i = 0; i < size; i++)
      inputs[i].Read(is, binary);
    ExpectToken(is, binary, "<NumOutputs>");
    ReadBasicType(is, binary, &size);
    if (size < 1 || size > 1000000)
      KALDI_ERR << "Invalid size " << size;
    outputs.resize(size);
    for (int32 i = 0; i < size; i++)
      outputs[i].Read(is, binary);
    ExpectToken(is, binary, "</Nnet3DiscriminativeEg>");
  }
  
  void NnetDiscriminativeExample::Swap(NnetDiscriminativeExample *other) {
    inputs.swap(other->inputs);
    outputs.swap(other->outputs);
  }
  
  void NnetDiscriminativeExample::Compress() {
    std::vector<NnetIo>::iterator iter = inputs.begin(), end = inputs.end();
    // calling features.Compress() will do nothing if they are sparse or already
    // compressed.
    for (; iter != end; ++iter) iter->features.Compress();
  }
  
  NnetDiscriminativeExample::NnetDiscriminativeExample(const NnetDiscriminativeExample &other):
      inputs(other.inputs), outputs(other.outputs) { }
  
  void MergeSupervision(
      const std::vector<const NnetDiscriminativeSupervision*> &inputs,
      NnetDiscriminativeSupervision *output) {
    int32 num_inputs = inputs.size(),
        num_indexes = 0;
    for (int32 n = 0; n < num_inputs; n++) {
      KALDI_ASSERT(inputs[n]->name == inputs[0]->name);
      num_indexes += inputs[n]->indexes.size();
    }
    output->name = inputs[0]->name;
    std::vector<const discriminative::DiscriminativeSupervision*> input_supervision;
    input_supervision.reserve(inputs.size());
    for (int32 n = 0; n < num_inputs; n++)
      input_supervision.push_back(&(inputs[n]->supervision));
    discriminative::DiscriminativeSupervision output_supervision;
    discriminative::MergeSupervision(input_supervision,
                           &output_supervision);
    output->supervision.Swap(&(output_supervision));
  
    output->indexes.clear();
    output->indexes.reserve(num_indexes);
    for (int32 n = 0; n < num_inputs; n++) {
      const std::vector<Index> &src_indexes = inputs[n]->indexes;
      int32 cur_size = output->indexes.size();
      output->indexes.insert(output->indexes.end(),
                             src_indexes.begin(), src_indexes.end());
      std::vector<Index>::iterator iter = output->indexes.begin() + cur_size,
          end = output->indexes.end();
      // change the 'n' index to correspond to the index into 'input'.
      // Each example gets a different 'n' value, starting from 0.
      for (; iter != end; ++iter) {
        KALDI_ASSERT(iter->n == 0 && "Merging already-merged discriminative egs");
        iter->n = n;
      }
    }
    KALDI_ASSERT(output->indexes.size() == num_indexes);
    // OK, at this point the 'indexes' will be in the wrong order,
    // because they should be first sorted by 't' and next by 'n'.
    // 'sort' will fix this, due to the operator < on type Index.
    // TODO: Is this required?
    std::sort(output->indexes.begin(), output->indexes.end());
  
    // merge the deriv_weights.
    if (inputs[0]->deriv_weights.Dim() != 0) {
      int32 frames_per_sequence = inputs[0]->deriv_weights.Dim();
      output->deriv_weights.Resize(output->indexes.size(), kUndefined);
      KALDI_ASSERT(output->deriv_weights.Dim() ==
                   frames_per_sequence * num_inputs);
      for (int32 n = 0; n < num_inputs; n++) {
        const Vector<BaseFloat> &src_deriv_weights = inputs[n]->deriv_weights;
        KALDI_ASSERT(src_deriv_weights.Dim() == frames_per_sequence);
        // the ordering of the deriv_weights corresponds to the ordering of the
        // Indexes, where the time dimension has the greater stride.
        for (int32 t = 0; t < frames_per_sequence; t++) {
          output->deriv_weights(t * num_inputs + n) = src_deriv_weights(t);
        }
      }
    }
    output->CheckDim();
  }
  
  
  void MergeDiscriminativeExamples(
      bool compress,
      std::vector<NnetDiscriminativeExample> *input,
      NnetDiscriminativeExample *output) {
    int32 num_examples = input->size();
    KALDI_ASSERT(num_examples > 0);
    // we temporarily make the input-features in 'input' look like regular
    // NnetExamples, so that we can recycle the
    // MergeExamples() function.
    std::vector<NnetExample> eg_inputs(num_examples);
    for (int32 i = 0; i < num_examples; i++)
      eg_inputs[i].io.swap((*input)[i].inputs);
    NnetExample eg_output;
    MergeExamples(eg_inputs, compress, &eg_output);
    // swap the inputs back so that they are not really changed.
    for (int32 i = 0; i < num_examples; i++)
      eg_inputs[i].io.swap((*input)[i].inputs);
    // write to 'output->inputs'
    eg_output.io.swap(output->inputs);
  
    // Now deal with the discriminative-supervision 'outputs'.  There will
    // normally be just one of these, with name "output", but we
    // handle the more general case.
    int32 num_output_names = (*input)[0].outputs.size();
    output->outputs.resize(num_output_names);
    for (int32 i = 0; i < num_output_names; i++) {
      std::vector<const NnetDiscriminativeSupervision*> to_merge(num_examples);
      for (int32 j = 0; j < num_examples; j++) {
        KALDI_ASSERT((*input)[j].outputs.size() == num_output_names);
        to_merge[j] = &((*input)[j].outputs[i]);
      }
      MergeSupervision(to_merge,
                       &(output->outputs[i]));
    }
  }
  
  
  void GetDiscriminativeComputationRequest(const Nnet &nnet,
                                           const NnetDiscriminativeExample &eg,
                                           bool need_model_derivative,
                                           bool store_component_stats,
                                           bool use_xent_regularization,
                                           bool use_xent_derivative,
                                           ComputationRequest *request) {
    request->inputs.clear();
    request->inputs.reserve(eg.inputs.size());
    request->outputs.clear();
    request->outputs.reserve(eg.outputs.size());
    request->need_model_derivative = need_model_derivative;
    request->store_component_stats = store_component_stats;
    for (size_t i = 0; i < eg.inputs.size(); i++) {
      const NnetIo &io = eg.inputs[i];
      const std::string &name = io.name;
      int32 node_index = nnet.GetNodeIndex(name);
      if (node_index == -1 &&
          !nnet.IsInputNode(node_index))
        KALDI_ERR << "Nnet example has input named '" << name
                  << "', but no such input node is in the network.";
  
      request->inputs.resize(request->inputs.size() + 1);
      IoSpecification &io_spec = request->inputs.back();
      io_spec.name = name;
      io_spec.indexes = io.indexes;
      io_spec.has_deriv = false;
    }
    for (size_t i = 0; i < eg.outputs.size(); i++) {
      // there will normally be exactly one output , named "output"
      const NnetDiscriminativeSupervision &sup = eg.outputs[i];
      const std::string &name = sup.name;
      int32 node_index = nnet.GetNodeIndex(name);
      if (node_index == -1 &&
          !nnet.IsOutputNode(node_index))
        KALDI_ERR << "Nnet example has output named '" << name
                  << "', but no such output node is in the network.";
      request->outputs.resize(request->outputs.size() + 1);
      IoSpecification &io_spec = request->outputs.back();
      io_spec.name = name;
      io_spec.indexes = sup.indexes;
      io_spec.has_deriv = need_model_derivative;
  
      if (use_xent_regularization) {
        size_t cur_size = request->outputs.size();
        request->outputs.resize(cur_size + 1);
        IoSpecification &io_spec = request->outputs[cur_size - 1],
            &io_spec_xent = request->outputs[cur_size];
        // the IoSpecification for the -xent output is the same
        // as for the regular output, except for its name which has
        // the -xent suffix (and the has_deriv member may differ).
        io_spec_xent = io_spec;
        io_spec_xent.name = name + "-xent";
        io_spec_xent.has_deriv = use_xent_derivative;
      }
    }
    // check to see if something went wrong.
    if (request->inputs.empty())
      KALDI_ERR << "No inputs in computation request.";
    if (request->outputs.empty())
      KALDI_ERR << "No outputs in computation request.";
  }
  
  void ShiftDiscriminativeExampleTimes(int32 frame_shift,
                              const std::vector<std::string> &exclude_names,
                              NnetDiscriminativeExample *eg) {
    std::vector<NnetIo>::iterator input_iter = eg->inputs.begin(),
        input_end = eg->inputs.end();
    for (; input_iter != input_end; ++input_iter) {
      bool must_exclude = false;
      std::vector<string>::const_iterator exclude_iter = exclude_names.begin(),
          exclude_end = exclude_names.end();
      for (; exclude_iter != exclude_end; ++exclude_iter)
        if (input_iter->name == *exclude_iter)
          must_exclude = true;
      if (!must_exclude) {
        std::vector<Index>::iterator indexes_iter = input_iter->indexes.begin(),
            indexes_end = input_iter->indexes.end();
        for (; indexes_iter != indexes_end; ++indexes_iter)
          indexes_iter->t += frame_shift;
      }
    }
    // note: we'll normally choose a small enough shift that the output-data
    // shift will be zero after dividing by frame_subsampling_factor
    // (e.g. frame_subsampling_factor == 3 and shift = 0 or 1.
    std::vector<NnetDiscriminativeSupervision>::iterator
        sup_iter = eg->outputs.begin(),
        sup_end = eg->outputs.end();
    for (; sup_iter != sup_end; ++sup_iter) {
      std::vector<Index> &indexes = sup_iter->indexes;
      KALDI_ASSERT(indexes.size() >= 2 && indexes[0].n == indexes[1].n &&
                   indexes[0].x == indexes[1].x);
      int32 frame_subsampling_factor = indexes[1].t - indexes[0].t;
      KALDI_ASSERT(frame_subsampling_factor > 0);
  
      // We need to shift by a multiple of frame_subsampling_factor.
      // Round to the closest multiple.
      int32 supervision_frame_shift =
          frame_subsampling_factor *
          std::floor(0.5 + (frame_shift * 1.0 / frame_subsampling_factor));
      if (supervision_frame_shift == 0)
        continue;
      std::vector<Index>::iterator indexes_iter = indexes.begin(),
          indexes_end = indexes.end();
      for (; indexes_iter != indexes_end; ++indexes_iter)
        indexes_iter->t += supervision_frame_shift;
    }
  }
  
  size_t NnetDiscriminativeExampleStructureHasher::operator () (
      const NnetDiscriminativeExample &eg) const noexcept {
    // these numbers were chosen at random from a list of primes.
    NnetIoStructureHasher io_hasher;
    size_t size = eg.inputs.size(), ans = size * 35099;
    for (size_t i = 0; i < size; i++)
      ans = ans * 19157 + io_hasher(eg.inputs[i]);
    for (size_t i = 0; i < eg.outputs.size(); i++) {
      const NnetDiscriminativeSupervision &sup = eg.outputs[i];
      StringHasher string_hasher;
      IndexVectorHasher indexes_hasher;
      ans = ans * 17957 +
          string_hasher(sup.name) + indexes_hasher(sup.indexes);
    }
    return ans;
  }
  
  bool NnetDiscriminativeExampleStructureCompare::operator () (
      const NnetDiscriminativeExample &a,
      const NnetDiscriminativeExample &b) const {
    NnetIoStructureCompare io_compare;
    if (a.inputs.size() != b.inputs.size() ||
        a.outputs.size() != b.outputs.size())
      return false;
    size_t size = a.inputs.size();
    for (size_t i = 0; i < size; i++)
      if (!io_compare(a.inputs[i], b.inputs[i]))
        return false;
    size = a.outputs.size();
    for (size_t i = 0; i < size; i++)
      if (a.outputs[i].name != b.outputs[i].name ||
          a.outputs[i].indexes != b.outputs[i].indexes)
        return false;
    return true;
  }
  
  
  int32 GetNnetDiscriminativeExampleSize(const NnetDiscriminativeExample &a) {
    int32 ans = 0;
    for (size_t i = 0; i < a.inputs.size(); i++) {
      int32 s = a.inputs[i].indexes.size();
      if (s > ans)
        ans = s;
    }
    for (size_t i = 0; i < a.outputs.size(); i++) {
      int32 s = a.outputs[i].indexes.size();
      if (s > ans)
        ans = s;
    }
    return ans;
  }
  
  
  DiscriminativeExampleMerger::DiscriminativeExampleMerger(const ExampleMergingConfig &config,
                               NnetDiscriminativeExampleWriter *writer):
      finished_(false), num_egs_written_(0),
      config_(config), writer_(writer) { }
  
  
  void DiscriminativeExampleMerger::AcceptExample(NnetDiscriminativeExample *eg) {
    KALDI_ASSERT(!finished_);
    // If an eg with the same structure as 'eg' is already a key in the
    // map, it won't be replaced, but if it's new it will be made
    // the key.  Also we remove the key before making the vector empty.
    // This way we ensure that the eg in the key is always the first
    // element of the vector.
    std::vector<NnetDiscriminativeExample*> &vec = eg_to_egs_[eg];
    vec.push_back(eg);
    int32 eg_size = GetNnetDiscriminativeExampleSize(*eg),
        num_available = vec.size();
    bool input_ended = false;
    int32 minibatch_size = config_.MinibatchSize(eg_size, num_available,
                                                 input_ended);
    if (minibatch_size != 0) {  // we need to write out a merged eg.
      KALDI_ASSERT(minibatch_size == num_available);
  
      std::vector<NnetDiscriminativeExample*> vec_copy(vec);
      eg_to_egs_.erase(eg);
  
      // MergeDiscriminativeExamples() expects a vector of NnetDiscriminativeExample, not of pointers,
      // so use swap to create that without doing any real work.
      std::vector<NnetDiscriminativeExample> egs_to_merge(minibatch_size);
      for (int32 i = 0; i < minibatch_size; i++) {
        egs_to_merge[i].Swap(vec_copy[i]);
        delete vec_copy[i];  // we owned those pointers.
      }
      WriteMinibatch(&egs_to_merge);
    }
  }
  
  void DiscriminativeExampleMerger::WriteMinibatch(
      std::vector<NnetDiscriminativeExample> *egs) {
    KALDI_ASSERT(!egs->empty());
    int32 eg_size = GetNnetDiscriminativeExampleSize((*egs)[0]);
    NnetDiscriminativeExampleStructureHasher eg_hasher;
    size_t structure_hash = eg_hasher((*egs)[0]);
    int32 minibatch_size = egs->size();
    stats_.WroteExample(eg_size, structure_hash, minibatch_size);
    NnetDiscriminativeExample merged_eg;
    MergeDiscriminativeExamples(config_.compress, egs, &merged_eg);
    std::ostringstream key;
    key << "merged-" << (num_egs_written_++) << "-" << minibatch_size;
    writer_->Write(key.str(), merged_eg);
  }
  
  void DiscriminativeExampleMerger::Finish() {
    if (finished_) return;  // already finished.
    finished_ = true;
  
    // we'll convert the map eg_to_egs_ to a vector of vectors to avoid
    // iterator invalidation problems.
    std::vector<std::vector<NnetDiscriminativeExample*> > all_egs;
    all_egs.reserve(eg_to_egs_.size());
  
    MapType::iterator iter = eg_to_egs_.begin(), end = eg_to_egs_.end();
    for (; iter != end; ++iter)
      all_egs.push_back(iter->second);
    eg_to_egs_.clear();
  
    for (size_t i = 0; i < all_egs.size(); i++) {
      int32 minibatch_size;
      std::vector<NnetDiscriminativeExample*> &vec = all_egs[i];
      KALDI_ASSERT(!vec.empty());
      int32 eg_size = GetNnetDiscriminativeExampleSize(*(vec[0]));
      bool input_ended = true;
      while (!vec.empty() &&
             (minibatch_size = config_.MinibatchSize(eg_size, vec.size(),
                                                     input_ended)) != 0) {
        // MergeDiscriminativeExamples() expects a vector of
        // NnetDiscriminativeExample, not of pointers, so use swap to create that
        // without doing any real work.
        std::vector<NnetDiscriminativeExample> egs_to_merge(minibatch_size);
        for (int32 i = 0; i < minibatch_size; i++) {
          egs_to_merge[i].Swap(vec[i]);
          delete vec[i];  // we owned those pointers.
        }
        vec.erase(vec.begin(), vec.begin() + minibatch_size);
        WriteMinibatch(&egs_to_merge);
      }
      if (!vec.empty()) {
        int32 eg_size = GetNnetDiscriminativeExampleSize(*(vec[0]));
        NnetDiscriminativeExampleStructureHasher eg_hasher;
        size_t structure_hash = eg_hasher(*(vec[0]));
        int32 num_discarded = vec.size();
        stats_.DiscardedExamples(eg_size, structure_hash, num_discarded);
        for (int32 i = 0; i < num_discarded; i++)
          delete vec[i];
        vec.clear();
      }
    }
    stats_.PrintStats();
  }
  
  
  
  } // namespace nnet3
  } // namespace kaldi