Blame view
src/nnet3/nnet-graph.cc
10.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
// nnet3/nnet-graph.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // 2015 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <iterator> #include <sstream> #include "nnet3/nnet-graph.h" namespace kaldi { namespace nnet3 { void NnetToDirectedGraph(const Nnet &nnet, std::vector<std::vector<int32> > *graph) { graph->clear(); int32 num_nodes = nnet.NumNodes(); graph->resize(num_nodes); for (int32 n = 0; n < num_nodes; n++) { const NetworkNode &node = nnet.GetNode(n); // handle dependencies of this node. std::vector<int32> node_dependencies; switch (node.node_type) { case kInput: break; // no node dependencies. case kDescriptor: node.descriptor.GetNodeDependencies(&node_dependencies); break; case kComponent: node_dependencies.push_back(n - 1); break; case kDimRange: node_dependencies.push_back(node.u.node_index); break; default: KALDI_ERR << "Invalid node type"; } SortAndUniq(&node_dependencies); for (size_t i = 0; i < node_dependencies.size(); i++) { int32 dep_n = node_dependencies[i]; KALDI_ASSERT(dep_n >= 0 && dep_n < num_nodes); (*graph)[dep_n].push_back(n); } } } void ComputeGraphTranspose(const std::vector<std::vector<int32> > &graph, std::vector<std::vector<int32> > *graph_transpose) { int32 size = graph.size(); graph_transpose->clear(); graph_transpose->resize(size); for (int32 n = 0; n < size; n++) { const std::vector<int32> &nodes = graph[n]; std::vector<int32>::const_iterator iter = nodes.begin(), end = nodes.end(); for (; iter != end; ++iter) { int32 dest = *iter; (*graph_transpose)[dest].push_back(n); } } } struct TarjanNode { int32 index; int32 lowlink; bool on_stack; TarjanNode() : index(-1), lowlink(-1), on_stack(false) {} }; void TarjanSccRecursive(int32 node, const std::vector<std::vector<int32> > &graph, int32 *global_index, std::vector<TarjanNode> *tarjan_nodes, std::vector<int32> *tarjan_stack, std::vector<std::vector<int32> > *sccs) { KALDI_ASSERT(sccs != NULL); KALDI_ASSERT(tarjan_nodes != NULL); KALDI_ASSERT(tarjan_stack != NULL); KALDI_ASSERT(global_index != NULL); KALDI_ASSERT(node >= 0 && node < graph.size()); // Initializes the current Tarjan node. (*tarjan_nodes)[node].index = *global_index; (*tarjan_nodes)[node].lowlink = *global_index; *global_index += 1; (*tarjan_nodes)[node].on_stack = true; tarjan_stack->push_back(node); // DFS from the current node. for (int32 i = 0; i < graph[node].size(); ++i) { int32 next = graph[node][i]; if ((*tarjan_nodes)[next].index == -1) { // First time we see this node. TarjanSccRecursive(next, graph, global_index, tarjan_nodes, tarjan_stack, sccs); (*tarjan_nodes)[node].lowlink = std::min((*tarjan_nodes)[node].lowlink, (*tarjan_nodes)[next].lowlink); } else if ((*tarjan_nodes)[next].on_stack) { // Next node is on the stack -- back edge. We can't use the lowlink of // next node, because that may point to the index of the root, while the // current node can't be the root. (*tarjan_nodes)[node].lowlink = std::min((*tarjan_nodes)[node].lowlink, (*tarjan_nodes)[next].index); } } // Output SCC. if ((*tarjan_nodes)[node].index == (*tarjan_nodes)[node].lowlink) { std::vector<int32> scc; int32 pop_node; do { pop_node = tarjan_stack->back(); tarjan_stack->pop_back(); (*tarjan_nodes)[pop_node].on_stack = false; scc.push_back(pop_node); } while (pop_node != node); KALDI_ASSERT(pop_node == node); sccs->push_back(scc); } } void FindSccsTarjan(const std::vector<std::vector<int32> > &graph, std::vector<std::vector<int32> > *sccs) { KALDI_ASSERT(sccs != NULL); // Initialization. std::vector<TarjanNode> tarjan_nodes(graph.size()); std::vector<int32> tarjan_stack; int32 global_index = 0; // Calls the recursive function. for (int32 n = 0; n < graph.size(); ++n) { if (tarjan_nodes[n].index == -1) { TarjanSccRecursive(n, graph, &global_index, &tarjan_nodes, &tarjan_stack, sccs); } } } void FindSccs(const std::vector<std::vector<int32> > &graph, std::vector<std::vector<int32> > *sccs) { // Internally we call Tarjan's SCC algorithm, as it only requires one DFS. We // can change this to other methods later on if necessary. KALDI_ASSERT(sccs != NULL); FindSccsTarjan(graph, sccs); } void MakeSccGraph(const std::vector<std::vector<int32> > &graph, const std::vector<std::vector<int32> > &sccs, std::vector<std::vector<int32> > *scc_graph) { KALDI_ASSERT(scc_graph != NULL); scc_graph->clear(); scc_graph->resize(sccs.size()); // Hash map from node to SCC index. std::vector<int32> node_to_scc_index(graph.size()); for (int32 i = 0; i < sccs.size(); ++i) { for (int32 j = 0; j < sccs[i].size(); ++j) { KALDI_ASSERT(sccs[i][j] >= 0 && sccs[i][j] < graph.size()); node_to_scc_index[sccs[i][j]] = i; } } // Builds graph. for (int32 i = 0; i < sccs.size(); ++i) { for (int32 j = 0; j < sccs[i].size(); ++j) { int32 node = sccs[i][j]; KALDI_ASSERT(node >= 0 && node < graph.size()); for (int32 k = 0; k < graph[node].size(); ++k) { if (node_to_scc_index[graph[node][k]] != i) { // Exclucding self. (*scc_graph)[i].push_back(node_to_scc_index[graph[node][k]]); } } } // If necessary, we can use a hash maps to avoid this sorting. SortAndUniq(&((*scc_graph)[i])); } } void ComputeTopSortOrderRecursive(int32 node, const std::vector<std::vector<int32> > &graph, std::vector<bool> *cycle_detector, std::vector<bool> *is_visited, std::vector<int32> *reversed_orders) { KALDI_ASSERT(node >= 0 && node < graph.size()); KALDI_ASSERT(cycle_detector != NULL); KALDI_ASSERT(is_visited != NULL); KALDI_ASSERT(reversed_orders != NULL); if ((*cycle_detector)[node]) { KALDI_ERR << "Cycle detected when computing the topological sorting order"; } if (!(*is_visited)[node]) { (*cycle_detector)[node] = true; for (int32 i = 0; i < graph[node].size(); ++i) { ComputeTopSortOrderRecursive(graph[node][i], graph, cycle_detector, is_visited, reversed_orders); } (*cycle_detector)[node] = false; (*is_visited)[node] = true; // At this point we have added all the children to <reversed_orders>, so we // can add the current now. reversed_orders->push_back(node); } } void ComputeTopSortOrder(const std::vector<std::vector<int32> > &graph, std::vector<int32> *node_to_order) { // Internally we use DFS, but we only put the node to <node_to_order> when all // its parents have been visited. KALDI_ASSERT(node_to_order != NULL); node_to_order->resize(graph.size()); std::vector<bool> cycle_detector(graph.size(), false); std::vector<bool> is_visited(graph.size(), false); std::vector<int32> reversed_orders; for(int32 i = 0; i < graph.size(); ++i) { if (!is_visited[i]) { ComputeTopSortOrderRecursive(i, graph, &cycle_detector, &is_visited, &reversed_orders); } } KALDI_ASSERT(node_to_order->size() == reversed_orders.size()); for (int32 i = 0; i < reversed_orders.size(); ++i) { KALDI_ASSERT(reversed_orders[i] >= 0 && reversed_orders[i] < graph.size()); (*node_to_order)[reversed_orders[i]] = graph.size() - i - 1; } } std::string PrintGraphToString(const std::vector<std::vector<int32> > &graph) { std::ostringstream os; int32 num_nodes = graph.size(); for (int32 i = 0; i < num_nodes; i++) { os << i << " -> ("; const std::vector<int32> &vec = graph[i]; int32 size = vec.size(); for (int32 j = 0; j < size; j++) { os << vec[j]; if (j + 1 < size) os << ","; } os << ")"; if (i + 1 < num_nodes) os << "; "; } return os.str(); } void ComputeNnetComputationEpochs(const Nnet &nnet, std::vector<int32> *node_to_epoch) { KALDI_ASSERT(node_to_epoch != NULL); std::vector<std::vector<int32> > graph; NnetToDirectedGraph(nnet, &graph); KALDI_VLOG(6) << "graph is: " << PrintGraphToString(graph); std::vector<std::vector<int32> > sccs; FindSccs(graph, &sccs); std::vector<std::vector<int32> > scc_graph; MakeSccGraph(graph, sccs, &scc_graph); KALDI_VLOG(6) << "scc graph is: " << PrintGraphToString(scc_graph); std::vector<int32> scc_node_to_epoch; ComputeTopSortOrder(scc_graph, &scc_node_to_epoch); if (GetVerboseLevel() >= 6) { std::ostringstream os; for (int32 i = 0; i < scc_node_to_epoch.size(); i++) os << scc_node_to_epoch[i] << ", "; KALDI_VLOG(6) << "scc_node_to_epoch is: " << os.str(); } node_to_epoch->clear(); node_to_epoch->resize(graph.size()); for (int32 i = 0; i < sccs.size(); ++i) { for (int32 j = 0; j < sccs[i].size(); ++j) { int32 node = sccs[i][j]; KALDI_ASSERT(node >= 0 && node < graph.size()); (*node_to_epoch)[node] = scc_node_to_epoch[i]; } } } bool GraphHasCycles(const std::vector<std::vector<int32> > &graph) { std::vector<std::vector<int32> > sccs; FindSccs(graph, &sccs); for (size_t i = 0; i < sccs.size(); i++) { if (sccs[i].size() > 1) return true; } // the next code checks for links from a state to itself. int32 num_nodes = graph.size(); for (size_t i = 0; i < num_nodes; i++) for (std::vector<int32>::const_iterator iter = graph[i].begin(), end = graph[i].end(); iter != end; ++iter) if (*iter == i) return true; return false; } } // namespace nnet3 } // namespace kaldi |