Blame view
src/nnet3/nnet-optimize-test.cc
12.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
// nnet3/nnet-optimize-test.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet3/nnet-nnet.h" #include "nnet3/nnet-compile.h" #include "nnet3/nnet-analyze.h" #include "nnet3/nnet-test-utils.h" #include "nnet3/nnet-optimize.h" #include "nnet3/nnet-compute.h" namespace kaldi { namespace nnet3 { // Run the test without optimizations and with optimizations specified by the // configs (the optimized version is done with class CachingOptimizingCompiler). // Only print warnings; we'll fail the whole test later. static bool UnitTestNnetOptimizeWithOptions(int32 srand_seed, NnetOptimizeOptions opt_config, CachingOptimizingCompilerOptions compiler_config) { //opt_config.convert_addition = false; //opt_config.remove_assignments = false; //opt_config.move_sizing_commands = false; //opt_config.allocate_from_other = false; srand(srand_seed); // so that we can compare between differnt optimization types // with the randomly generated network staying the same. struct NnetGenerationOptions gen_config; std::vector<std::string> configs; GenerateConfigSequence(gen_config, &configs); Nnet nnet; for (size_t j = 0; j < configs.size(); j++) { KALDI_LOG << "Input config[" << j << "] is: " << configs[j]; std::istringstream is(configs[j]); nnet.ReadConfig(is); } ComputationRequest request; std::vector<Matrix<BaseFloat> > inputs; ComputeExampleComputationRequestSimple(nnet, &request, &inputs); NnetComputation computation; Compiler compiler(request, nnet); CompilerOptions opts; compiler.CreateComputation(opts, &computation); { std::ostringstream os; computation.Print(os, nnet); KALDI_LOG << "Generated computation with no optimization or shortcut is: " << os.str(); } CheckComputationOptions check_config; // we can do the rewrite check since it's before optimization. check_config.check_rewrite = true; ComputationChecker checker(check_config, nnet, computation); checker.Check(); CachingOptimizingCompiler opt_compiler(nnet, opt_config, compiler_config); const NnetComputation &computation_opt = *opt_compiler.Compile(request); { std::ostringstream os; computation_opt.Print(os, nnet); KALDI_LOG << "Optimized computation is: " << os.str(); } NnetComputeOptions compute_opts; if (RandInt(0, 1) == 0) compute_opts.debug = true; computation.ComputeCudaIndexes(); // computation_opt has already had this function called. Nnet nnet_to_update(nnet); // copy of the nnet that we update... needed to // test the consolidation of backprop commands, // otherwise the optimized and non-optimized // comptuations differ. ScaleNnet(0.0, &nnet_to_update); // with natural gradient, the consolidation would affect the final model // params -> test just the gradient. SetNnetAsGradient(&nnet_to_update); NnetComputer computer(compute_opts, computation, nnet, &nnet_to_update); Nnet nnet_opt(nnet); // copy of the nnet for the optimized computation. // necessary in case backprop changes parameters. Nnet nnet_opt_to_update(nnet_opt); ScaleNnet(0.0, &nnet_opt_to_update); SetNnetAsGradient(&nnet_opt_to_update); // NnetComputer for the optimized version of the computation. NnetComputer computer_opt(compute_opts, computation_opt, nnet_opt, &nnet_opt_to_update); // provide the input to the computations. for (size_t i = 0; i < request.inputs.size(); i++) { CuMatrix<BaseFloat> temp(inputs[i]); KALDI_LOG << "Input sum is " << temp.Sum(); computer.AcceptInput(request.inputs[i].name, &temp); CuMatrix<BaseFloat> temp2(inputs[i]); computer_opt.AcceptInput(request.inputs[i].name, &temp2); } KALDI_LOG << "Running non-optimized forward computation"; srand(srand_seed); ResetGenerators(&nnet); computer.Run(); KALDI_LOG << "Running optimized forward computation"; srand(srand_seed); ResetGenerators(&nnet_opt); computer_opt.Run(); const CuMatrixBase<BaseFloat> &output(computer.GetOutput("output")); KALDI_LOG << "Output sum (not optimized) is " << output.Sum(); const CuMatrixBase<BaseFloat> &output_opt(computer_opt.GetOutput("output")); KALDI_LOG << "Output sum (optimized) is " << output_opt.Sum(); if (!ApproxEqual(output, output_opt)) { KALDI_WARN << "Non-optimized and optimized versions of the computation give " << "different outputs: " << output << " vs. " << output_opt; return false; } CuMatrix<BaseFloat> output_deriv(output.NumRows(), output.NumCols()); output_deriv.SetRandn(); CuMatrix<BaseFloat> output_deriv_opt(output_deriv); if (request.outputs[0].has_deriv) { computer.AcceptInput("output", &output_deriv); computer_opt.AcceptInput("output", &output_deriv_opt); KALDI_LOG << "Running non-optimized backward computation"; computer.Run(); KALDI_LOG << "Running optimized backward computation"; computer_opt.Run(); for (size_t i = 0; i < request.inputs.size(); i++) { if (request.inputs[i].has_deriv) { const CuMatrixBase<BaseFloat> &in_deriv = computer.GetOutput(request.inputs[i].name); const CuMatrixBase<BaseFloat> &in_deriv_opt = computer_opt.GetOutput(request.inputs[i].name); KALDI_LOG << "Input-deriv sum for input '" << request.inputs[i].name << "' (non-optimized) is " << in_deriv.Sum(); KALDI_LOG << "Input-deriv sum for input '" << request.inputs[i].name << "' (optimized) is " << in_deriv_opt.Sum(); if (!ApproxEqual(in_deriv, in_deriv_opt)) { KALDI_WARN << "Non-optimized and optimized versions of the " << "computation give different input-derivs."; return false; } } } } if (!NnetParametersAreIdentical(nnet_to_update, nnet_opt_to_update, 1.0e-05)) { KALDI_WARN << "Neural networks differ after training, between " << "optimized and non-optimized computation."; return false; } else { return true; } } // This test runs the computation with and without optimization, and checks that // the outputs are the same. static void UnitTestNnetOptimizeInternal(int32 srand_seed) { NnetOptimizeOptions optimize_all; CachingOptimizingCompilerOptions compiler_all; // randomly sometimes set min_deriv and max_deriv to small/large values, // which will cause some of the LimitDerivativeTimes() code to be called // (without really changing anything). if (RandInt(0, 3) == 0) optimize_all.min_deriv_time = -200; if (RandInt(0, 3) == 0) optimize_all.max_deriv_time = 1000; // this is useful for debugging as it removes nans: // optimize_all.initialize_undefined = false; bool success = UnitTestNnetOptimizeWithOptions(srand_seed, optimize_all, compiler_all); if (success) return; // Test failed with full optimization. Slowly retry with various // optimizations switched off. NnetOptimizeOptions optimize = optimize_all; CachingOptimizingCompilerOptions compiler = compiler_all; compiler.use_shortcut = false; bool succ_no_shortcut = UnitTestNnetOptimizeWithOptions(srand_seed, optimize, compiler); compiler = compiler_all; optimize.propagate_in_place = false; bool succ_no_propagate_in_place = UnitTestNnetOptimizeWithOptions(srand_seed, optimize, compiler); optimize = optimize_all; optimize.backprop_in_place = false; bool succ_no_backprop_in_place = UnitTestNnetOptimizeWithOptions(srand_seed, optimize, compiler); optimize = optimize_all; optimize.optimize_row_ops = false; bool succ_no_row_ops = UnitTestNnetOptimizeWithOptions(srand_seed, optimize, compiler); optimize = optimize_all; optimize.convert_addition = false; bool succ_no_convert_addition = UnitTestNnetOptimizeWithOptions(srand_seed, optimize, compiler); optimize = optimize_all; optimize.remove_assignments = false; bool succ_no_remove_assignments = UnitTestNnetOptimizeWithOptions(srand_seed, optimize, compiler); optimize = optimize_all; optimize.initialize_undefined = false; bool succ_no_initialize_undefined = UnitTestNnetOptimizeWithOptions(srand_seed, optimize, compiler); optimize = optimize_all; optimize.allocate_from_other = false; bool succ_no_allocate_from_other = UnitTestNnetOptimizeWithOptions(srand_seed, optimize, compiler); optimize = optimize_all; optimize.move_sizing_commands = false; bool succ_no_move_sizing_commands = UnitTestNnetOptimizeWithOptions(srand_seed, optimize, compiler); optimize = optimize_all; optimize.snip_row_ops = false; bool succ_no_snip_row_ops = UnitTestNnetOptimizeWithOptions(srand_seed, optimize, compiler); optimize = optimize_all; optimize.min_deriv_time = std::numeric_limits<int32>::min(); optimize.max_deriv_time = std::numeric_limits<int32>::max(); optimize.max_deriv_time_relative = std::numeric_limits<int32>::max(); bool succ_no_deriv_time = UnitTestNnetOptimizeWithOptions(srand_seed, optimize, compiler); optimize = optimize_all; #define KALDI_SUCCFAIL(b) ((b) ? "SUCCESS" : "FAILURE") KALDI_ERR << "Test failed with all optimizations enabled. Retried test with the " << "following optimizations turned off:" << " use_shortcut ... " << KALDI_SUCCFAIL(succ_no_shortcut) << " propagate_in_place ... " << KALDI_SUCCFAIL(succ_no_propagate_in_place) << " backprop_in_place ... " << KALDI_SUCCFAIL(succ_no_backprop_in_place) << " optimize_row_ops ... " << KALDI_SUCCFAIL(succ_no_row_ops) << " convert_addition ... " << KALDI_SUCCFAIL(succ_no_convert_addition) << " remove_assignments ... " << KALDI_SUCCFAIL(succ_no_remove_assignments) << " initialize_undefined ... " << KALDI_SUCCFAIL(succ_no_initialize_undefined) << " allocate_from_other ... " << KALDI_SUCCFAIL(succ_no_allocate_from_other) << " move_sizing_commands ... " << KALDI_SUCCFAIL(succ_no_move_sizing_commands) << " snip_row_ops ... " << KALDI_SUCCFAIL(succ_no_snip_row_ops) << " no_deriv_time ... " << KALDI_SUCCFAIL(succ_no_deriv_time); #undef KALDI_SUCCFAIL } static void UnitTestNnetOptimize() { for (int32 srand_seed = 0; srand_seed < 40; srand_seed++) { KALDI_LOG << "About to run UnitTestNnetOptimizeInternal with srand_seed = " << srand_seed; UnitTestNnetOptimizeInternal(srand_seed); } } } // namespace nnet3 } // namespace kaldi int main() { using namespace kaldi; using namespace kaldi::nnet3; SetVerboseLevel(3); #if HAVE_CUDA == 1 CuDevice::Instantiate().SetDebugStrideMode(true); CuDevice::Instantiate().SelectGpuId("no"); UnitTestNnetOptimize(); CuDevice::Instantiate().SelectGpuId("yes"); #endif UnitTestNnetOptimize(); KALDI_LOG << "Nnet tests succeeded."; return 0; } |