Blame view
src/nnet3/nnet-simple-component.h
92.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 |
// nnet3/nnet-simple-component.h // Copyright 2011-2013 Karel Vesely // 2012-2017 Johns Hopkins University (author: Daniel Povey) // 2013 Xiaohui Zhang // 2014-2016 Vijayaditya Peddinti // 2014-2015 Guoguo Chen // 2015 Daniel Galvez // 2015 Tom Ko // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET3_NNET_SIMPLE_COMPONENT_H_ #define KALDI_NNET3_NNET_SIMPLE_COMPONENT_H_ #include "nnet3/nnet-common.h" #include "nnet3/nnet-component-itf.h" #include "nnet3/natural-gradient-online.h" #include <iostream> namespace kaldi { namespace nnet3 { /// @file nnet-simple-component.h /// This file contains declarations of components that are "simple", meaning /// they don't care about the indexes they are operating on, produce one /// output for one input, and return the kSimpleComponent flag in their /// Properties(): for example, tanh and affine components. In /// nnet-general-component.h there are components that don't fit this pattern. /// /// Some components that do provide the kSimpleComponent flag are not declared /// here: see also nnet-normalize-component.h and nnet-combined-component.h // This "nnet3" version of the p-norm component only supports the 2-norm. class PnormComponent: public Component { public: void Init(int32 input_dim, int32 output_dim); explicit PnormComponent(int32 input_dim, int32 output_dim) { Init(input_dim, output_dim); } virtual int32 Properties() const { return kSimpleComponent|kBackpropNeedsInput|kBackpropNeedsOutput; } PnormComponent(): input_dim_(0), output_dim_(0) { } virtual std::string Type() const { return "PnormComponent"; } virtual void InitFromConfig(ConfigLine *cfl); virtual int32 InputDim() const { return input_dim_; } virtual int32 OutputDim() const { return output_dim_; } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_value, const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual Component* Copy() const { return new PnormComponent(input_dim_, output_dim_); } virtual void Read(std::istream &is, bool binary); // This Read function // requires that the Component has the correct type. /// Write component to stream virtual void Write(std::ostream &os, bool binary) const; protected: int32 input_dim_; int32 output_dim_; }; // This component randomly zeros dropout_proportion of the input // and the derivatives are backpropagated through the nonzero inputs. // Typically this component used during training but not in test time. // The idea is described under the name Dropout, in the paper // "Dropout: A Simple Way to Prevent Neural Networks from Overfitting". class DropoutComponent : public RandomComponent { public: void Init(int32 dim, BaseFloat dropout_proportion = 0.0, bool dropout_per_frame = false); DropoutComponent(int32 dim, BaseFloat dropout = 0.0, bool dropout_per_frame = false) { Init(dim, dropout, dropout_per_frame); } DropoutComponent(): dim_(0), dropout_proportion_(0.0), dropout_per_frame_(false) { } DropoutComponent(const DropoutComponent &other); virtual int32 Properties() const { return kBackpropInPlace|kSimpleComponent|kBackpropNeedsInput| kBackpropNeedsOutput|kRandomComponent; } virtual std::string Type() const { return "DropoutComponent"; } virtual void InitFromConfig(ConfigLine *cfl); virtual int32 InputDim() const { return dim_; } virtual int32 OutputDim() const { return dim_; } virtual void Read(std::istream &is, bool binary); // Write component to stream virtual void Write(std::ostream &os, bool binary) const; virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_value, const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual Component* Copy() const; virtual std::string Info() const; void SetDropoutProportion(BaseFloat dropout_proportion) { dropout_proportion_ = dropout_proportion; } BaseFloat DropoutProportion() const { return dropout_proportion_; } private: int32 dim_; /// dropout-proportion is the proportion that is dropped out, /// e.g. if 0.1, we set 10% to zero value. BaseFloat dropout_proportion_; bool dropout_per_frame_; }; class ElementwiseProductComponent: public Component { public: void Init(int32 input_dim, int32 output_dim); explicit ElementwiseProductComponent(int32 input_dim, int32 output_dim) { Init(input_dim, output_dim); } virtual int32 Properties() const { return kSimpleComponent|kBackpropNeedsInput; } ElementwiseProductComponent(): input_dim_(0), output_dim_(0) { } virtual std::string Type() const { return "ElementwiseProductComponent"; } virtual void InitFromConfig(ConfigLine *cfl); virtual int32 InputDim() const { return input_dim_; } virtual int32 OutputDim() const { return output_dim_; } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_value, const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual Component* Copy() const { return new ElementwiseProductComponent(input_dim_, output_dim_); } virtual void Read(std::istream &is, bool binary); // This Read function // requires that the Component has the correct type. /// Write component to stream virtual void Write(std::ostream &os, bool binary) const; protected: int32 input_dim_; int32 output_dim_; }; /* Implements the sigmoid nonlinearity, i.e. the function y = exp(-x). Configuration values accepted: dim Dimension of this component, e.g. 1024 Configuration values inherited from NonlinearComponent, and their local meanings: self-repair-lower-threshold e.g. self-repair-lower-threshold=0.05. This controls the self-repair mechanism, which for sigmoid units consists of identifying units which are oversaturated (i.e. usually close to -1 or +1) and nudging the inputs to be closer to zero. It gates on the average derivative of the nonlinearity, which for sigmoid is a value between 0 and 0.25. For units where the average function-derivative accumulated during this iteration (job) of training is less than this threshold, we activate self-repair, which consists of adding (-self-repair-scale * (2*the output of the nonlinearity - 1.0)) to the backpropagated derivatives. This just happens to be a convenient-to-compute function that's +1 for large negative inputs, and -1 for large positive inputs, and smooth in between. The default value of this is -1000, which the code internally maps to 0.05 which is suitable for sigmoid units; if you do set it, you can set it to a value like 0.025 or 0.075. self-repair-scale Scale for the self-repair mechanism; see comments above. default=0, but we usually set this to 1.0e-05 (or occasionally 1.0e-04) in the scripts. */ class SigmoidComponent: public NonlinearComponent { public: explicit SigmoidComponent(const SigmoidComponent &other): NonlinearComponent(other) { } SigmoidComponent() { } virtual std::string Type() const { return "SigmoidComponent"; } virtual int32 Properties() const { return kSimpleComponent|kBackpropNeedsOutput|kPropagateInPlace|kStoresStats; } virtual Component* Copy() const { return new SigmoidComponent(*this); } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &, //in_value const CuMatrixBase<BaseFloat> &out_value, const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void StoreStats(const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_value, void *memo); private: // this function is called from Backprop code and only does something if the // self-repair-scale config value is set. void RepairGradients(const CuMatrixBase<BaseFloat> &out_value, CuMatrixBase<BaseFloat> *in_deriv, SigmoidComponent *to_update) const; SigmoidComponent &operator = (const SigmoidComponent &other); // Disallow. }; /* Implements the tanh nonlinearity, i.e. the function y = tanh(x). Configuration values accepted: dim Dimension of this component, e.g. 1024 Configuration values inherited from NonlinearComponent, and their local meanings: self-repair-lower-threshold e.g. self-repair-lower-threshold=0.2. This controls the self-repair mechanism, which for tanh units consists of identifying units which are oversaturated (i.e. usually close to -1 or +1) and nudging the inputs to be closer to zero. It gates on the average derivative of the nonlinearity, which for tanh is a value between 0 and 1. For units where the average function-derivative accumulated during this iteration (job) of training is less than this threshold, we activate self-repair, which consists of adding (-self-repair-scale * the output of the nonlinearity), i.e. (-self-repair-scale * tanh(x)) to the backpropagated derivatives. The default value of this is -1000, which the code internally maps to 0.2 which is suitable for tanh units; if you do set it, you can set it to a value like 0.1 or 0.3. self-repair-scale Scale for the self-repair mechanism; see comments above. default=0, but we usually set this to 1.0e-05 (or occasionally 1.0e-04) in the scripts. */ class TanhComponent: public NonlinearComponent { public: explicit TanhComponent(const TanhComponent &other): NonlinearComponent(other) { } TanhComponent() { } virtual std::string Type() const { return "TanhComponent"; } virtual Component* Copy() const { return new TanhComponent(*this); } virtual int32 Properties() const { return kSimpleComponent|kBackpropNeedsOutput|kPropagateInPlace|kStoresStats; } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &, //in_value const CuMatrixBase<BaseFloat> &out_value, const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void StoreStats(const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_value, void *memo); private: // this function is called from Backprop code and only does something if the // self-repair-scale config value is set. void RepairGradients(const CuMatrixBase<BaseFloat> &out_value, CuMatrixBase<BaseFloat> *in_deriv, TanhComponent *to_update) const; TanhComponent &operator = (const TanhComponent &other); // Disallow. }; /* Implements the Rectified Linear Unit nonlinearity, a.k.a. ReLU. Configuration values accepted: dim Dimension of this component, e.g. 1024 Configuration values inherited from NonlinearComponent, and their local meanings: self-repair-lower-threshold e.g. self-repair-lower-threshold=0.05. (Lower threshold for self-repair, if set; in this case acts on the average function-derivative, which is the proportion of the time the output is > 0. For any unit where the average function-derivative is lower than this threshold, we add 'self-repair-scale' to the backpropagated derivatives in backprop. There is no default (default=-1000, which is interpreted specially). self-repair-upper-threshold e.g. self-repair-upper-threshold=0.95. Like self-repair-lower-threshold, but controls self-repair for units that are active *too* much of the time. Units whose average function-derivative exceeds this threshold will have the negative of 'self-repair-scale' added to their input derivatives in backprop. There is no default (default=-1000, which is interpreted specially). self-repair-scale Scale for the self-repair mechanism; see comments for self-repair-lower-threshold and self-repair-upper-threshold for details. default=0, but we usually set this to 1.0e-05 (or occasionally 1.0e-04) in the scripts. */ class RectifiedLinearComponent: public NonlinearComponent { public: explicit RectifiedLinearComponent(const RectifiedLinearComponent &other): NonlinearComponent(other) { } RectifiedLinearComponent() { } virtual std::string Type() const { return "RectifiedLinearComponent"; } virtual Component* Copy() const { return new RectifiedLinearComponent(*this); } virtual int32 Properties() const { return kSimpleComponent|kBackpropNeedsOutput|kPropagateInPlace| kStoresStats|(block_dim_ != dim_ ? kInputContiguous : 0); } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &, //in_value const CuMatrixBase<BaseFloat> &out_value, const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void StoreStats(const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_value, void *memo); private: // this function is called from Backprop code and only does something if the // self-repair-scale config value is set. void RepairGradients(CuMatrixBase<BaseFloat> *in_deriv, RectifiedLinearComponent *to_update) const; RectifiedLinearComponent &operator = (const RectifiedLinearComponent &other); // Disallow. }; class FixedAffineComponent; class FixedScaleComponent; class PerElementScaleComponent; class PerElementOffsetComponent; /* Affine means a linear function plus an offset. Note: although this class can be instantiated, it also functions as a base-class for more specialized versions of AffineComponent. Parameters accepted on the config line, with default if applicable: matrix If specified, a filename containing the parameters of the class as a single matrix containing the linear_params, plus the bias_params as the last column input-dim The input dimension of the component output-dim The output dimension of the component param-stddev=1/sqrt(input-dim) The standard deviation of the elements of the linear parameters (they will have a Gaussian distribution with this standard deviation). bias-stddev=1.0 The standard deviation of the elements of the bias parameters orthonormal-constraint=0.0 Can be used to constrain the linear parameter matrix to be semi-orthogonal, see ConstraintOrhonormal() in nnet-utils.h, and http://www.danielpovey.com/files/2018_interspeech_tdnnf.pdf. */ class AffineComponent: public UpdatableComponent { public: virtual int32 InputDim() const { return linear_params_.NumCols(); } virtual int32 OutputDim() const { return linear_params_.NumRows(); } BaseFloat OrthonormalConstraint() const { return orthonormal_constraint_; } virtual std::string Info() const; virtual void InitFromConfig(ConfigLine *cfl); AffineComponent(): orthonormal_constraint_(0.0) { } // use Init to really initialize. virtual std::string Type() const { return "AffineComponent"; } virtual int32 Properties() const { return kSimpleComponent|kUpdatableComponent| kBackpropNeedsInput|kBackpropAdds; } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; virtual Component* Copy() const; // Some functions from base-class UpdatableComponent. virtual void Scale(BaseFloat scale); virtual void Add(BaseFloat alpha, const Component &other); virtual void PerturbParams(BaseFloat stddev); virtual BaseFloat DotProduct(const UpdatableComponent &other) const; virtual int32 NumParameters() const; virtual void Vectorize(VectorBase<BaseFloat> *params) const; virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms); // Some functions that are specific to this class. virtual void SetParams(const CuVectorBase<BaseFloat> &bias, const CuMatrixBase<BaseFloat> &linear); const CuVector<BaseFloat> &BiasParams() const { return bias_params_; } CuVector<BaseFloat> &BiasParams() { return bias_params_; } const CuMatrix<BaseFloat> &LinearParams() const { return linear_params_; } CuMatrix<BaseFloat> &LinearParams() { return linear_params_; } explicit AffineComponent(const AffineComponent &other); // The next constructor is used in converting from nnet1. AffineComponent(const CuMatrixBase<BaseFloat> &linear_params, const CuVectorBase<BaseFloat> &bias_params, BaseFloat learning_rate); // This function resizes the dimensions of the component, setting the // parameters to zero, while leaving any other configuration values the same. virtual void Resize(int32 input_dim, int32 output_dim); void Init(int32 input_dim, int32 output_dim, BaseFloat param_stddev, BaseFloat bias_stddev); protected: void Init(std::string matrix_filename); friend class NaturalGradientAffineComponent; // This function Update() is for extensibility; child classes may override // this, e.g. for natural gradient update. virtual void Update( const std::string &debug_info, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_deriv) { UpdateSimple(in_value, out_deriv); } // UpdateSimple is used when *this is a gradient. Child classes may override // this if needed, but typically won't need to. virtual void UpdateSimple( const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_deriv); const AffineComponent &operator = (const AffineComponent &other); // Disallow. CuMatrix<BaseFloat> linear_params_; CuVector<BaseFloat> bias_params_; // see documentation at the top of this class for more information on the // following. BaseFloat orthonormal_constraint_; }; class RepeatedAffineComponent; /// This class implements an affine transform using a block diagonal matrix /// e.g., one whose weight matrix is all zeros except for blocks on the /// diagonal. All these blocks have the same dimensions. /// input-dim: num cols of block diagonal matrix. /// output-dim: num rows of block diagonal matrix. /// num-blocks: number of blocks in diagonal of the matrix. /// num-blocks must divide both input-dim and output-dim class BlockAffineComponent : public UpdatableComponent { public: virtual int32 InputDim() const { return linear_params_.NumCols() * num_blocks_; } virtual int32 OutputDim() const { return linear_params_.NumRows(); } virtual std::string Info() const; virtual void InitFromConfig(ConfigLine *cfl); BlockAffineComponent() { } virtual std::string Type() const { return "BlockAffineComponent"; } virtual int32 Properties() const { return kSimpleComponent|kUpdatableComponent| kBackpropNeedsInput|kBackpropAdds; } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; virtual Component* Copy() const; // Functions from base-class UpdatableComponent. virtual void Scale(BaseFloat scale); virtual void Add(BaseFloat alpha, const Component &other); virtual void PerturbParams(BaseFloat stddev); virtual BaseFloat DotProduct(const UpdatableComponent &other) const; virtual int32 NumParameters() const; virtual void Vectorize(VectorBase<BaseFloat> *params) const; virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms); explicit BlockAffineComponent(const BlockAffineComponent &other); explicit BlockAffineComponent(const RepeatedAffineComponent &rac); protected: // The matrix linear_params_ has a block structure, with num_blocks_ blocks of // equal size. The blocks are stored in linear_params_ as // [ M // N // O ] but we actually treat it as the matrix: // [ M 0 0 // 0 N 0 // 0 0 O ] CuMatrix<BaseFloat> linear_params_; CuVector<BaseFloat> bias_params_; int32 num_blocks_; private: // BlockAffine-specific functions. void Init(int32 input_dim, int32 output_dim, int32 num_blocks, BaseFloat param_stddev, BaseFloat bias_mean, BaseFloat bias_stddev); const BlockAffineComponent &operator = (const BlockAffineComponent &other); // Disallow. }; class RepeatedAffineComponent: public UpdatableComponent { public: virtual int32 InputDim() const { return linear_params_.NumCols() * num_repeats_; } virtual int32 OutputDim() const { return linear_params_.NumRows() * num_repeats_; } virtual std::string Info() const; virtual void InitFromConfig(ConfigLine *cfl); RepeatedAffineComponent() { } // use Init to really initialize. virtual std::string Type() const { return "RepeatedAffineComponent"; } virtual int32 Properties() const { return kSimpleComponent|kUpdatableComponent|kBackpropNeedsInput| kBackpropAdds|kInputContiguous|kOutputContiguous; } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; virtual Component* Copy() const; // Some functions from base-class UpdatableComponent. virtual void Scale(BaseFloat scale); virtual void Add(BaseFloat alpha, const Component &other); virtual void PerturbParams(BaseFloat stddev); virtual BaseFloat DotProduct(const UpdatableComponent &other) const; virtual int32 NumParameters() const; virtual void Vectorize(VectorBase<BaseFloat> *params) const; virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms); // Some functions that are specific to this class. const CuVector<BaseFloat> &BiasParams() const { return bias_params_; } const CuMatrix<BaseFloat> &LinearParams() const { return linear_params_; } explicit RepeatedAffineComponent(const RepeatedAffineComponent &other); friend BlockAffineComponent::BlockAffineComponent(const RepeatedAffineComponent &rac); protected: void Init(int32 input_dim, int32 output_dim, int32 num_repeats, BaseFloat param_stddev, BaseFloat bias_mean, BaseFloat bias_stddev); // This function Update(), called from backprop, is broken out for // extensibility to natural gradient update. virtual void Update( const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_deriv); // This function does nothing here but is redefined in child-class // NaturalGradientRepeatedAffineComponent. This help avoid repeated code. virtual void SetNaturalGradientConfigs() { } const RepeatedAffineComponent &operator = (const RepeatedAffineComponent &other); // Disallow. CuMatrix<BaseFloat> linear_params_; CuVector<BaseFloat> bias_params_; int32 num_repeats_; }; class NaturalGradientRepeatedAffineComponent: public RepeatedAffineComponent { public: // Use Init() to really initialize. NaturalGradientRepeatedAffineComponent() { } // Most of the public functions are inherited from RepeatedAffineComponent. virtual std::string Type() const { return "NaturalGradientRepeatedAffineComponent"; } virtual Component* Copy() const; // Copy constructor explicit NaturalGradientRepeatedAffineComponent( const NaturalGradientRepeatedAffineComponent &other); virtual void ConsolidateMemory(); private: virtual void Update( const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_deriv); const NaturalGradientRepeatedAffineComponent &operator=( const NaturalGradientRepeatedAffineComponent &other); // Disallow. // Applies the default configuration to preconditioner_in_. virtual void SetNaturalGradientConfigs(); // For efficiency reasons we only apply the natural gradient to the input // side, i.e. not to the space of output derivatives-- we believe the input // side is the more important side. We don't make the natural-gradient // configurable; we just give it a reasonable configuration. // Instead of using the individual data-points, for efficiency reasons we use // the distribution of per-minibatch summed derivatives over each dimension of // the output space, as the source for the Fisher matrix. OnlineNaturalGradient preconditioner_in_; }; class SoftmaxComponent: public NonlinearComponent { public: explicit SoftmaxComponent(const SoftmaxComponent &other): NonlinearComponent(other) { } SoftmaxComponent() { } virtual std::string Type() const { return "SoftmaxComponent"; } virtual int32 Properties() const { return kSimpleComponent|kPropagateInPlace|kBackpropInPlace| kBackpropNeedsOutput|kStoresStats; } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_value, const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void StoreStats(const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_value, void *memo); virtual Component* Copy() const { return new SoftmaxComponent(*this); } private: SoftmaxComponent &operator = (const SoftmaxComponent &other); // Disallow. }; /* Implements the log of a softmax nonlinearity, so it's the same as shifting each input vector by a constant offset so that, when exponentiated, it would sum to one. We usually use this in place of softmax because the log-scale output will not saturate. Configuration values accepted: dim e.g. dim=8061. Usually this is the last component in a network, so 'dim' is the number of classes. */ class LogSoftmaxComponent: public NonlinearComponent { public: explicit LogSoftmaxComponent(const LogSoftmaxComponent &other): NonlinearComponent(other) { } LogSoftmaxComponent() { } virtual std::string Type() const { return "LogSoftmaxComponent"; } virtual int32 Properties() const { return kSimpleComponent|kBackpropNeedsOutput|kStoresStats; } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_value, const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual Component* Copy() const { return new LogSoftmaxComponent(*this); } private: LogSoftmaxComponent &operator = (const LogSoftmaxComponent &other); // Disallow. }; /* Keywords: natural gradient descent, NG-SGD, naturalgradient. For the top-level of the natural gradient code look here, and also in nnet-precondition-online.h. NaturalGradientAffineComponent is a version of AffineComponent that has a non-(multiple of unit) learning-rate matrix. See nnet-precondition-online.h for a description of the technique. It is described, under the name Online NG-SGD, in the paper "Parallel training of DNNs with Natural Gradient and Parameter Averaging" (ICLR workshop, 2015) by Daniel Povey, Xiaohui Zhang and Sanjeev Khudanpur. Configuration values accepted by this component: Values inherited from UpdatableComponent (see its declaration in nnet-component-itf.h for details): learning-rate learning-rate-factor max-change Values used in initializing the component's parameters: input-dim e.g. input-dim=1024. The input dimension. output-dim e.g. output-dim=1024. The output dimension. param-stddev e.g. param-stddev=0.025. The standard deviation used to randomly initialize the linear parameters (as Gaussian random values * param-stddev). Defaults to 1/sqrt(input-dim), which is Glorot initialization. bias-stddev e.g. bias-stddev=0.0. The standard deviation used to randomly initialize the bias parameters. Defaults to 1.0 but we usually set it to 0.0 in the config. bias-mean e.g. bias-mean=1.0. Allows you to ininialize the bias parameters with an offset. Default is 0.0 which is normally suitable matrix e.g. matrix=foo/bar/init.mat May be used as an alternative to (input-dim, output-dim, param-stddev, bias-stddev, bias-mean) to initialize the parameters. Dimension is output-dim by (input-dim + 1), last column is interpreted as the bias. Other options: orthonormal-constraint=0.0 If you set this to 1.0, then the linear_params_ matrix will be (approximately) constrained during training to have orthonormal rows (or columns, whichever is fewer).. it turns out the real name for this is a "semi-orthogonal" matrix. You can choose a positive nonzero value different than 1.0 to have a scaled semi-orthgonal matrix, i.e. with singular values at the selected value (e.g. 0.5, or 2.0). This is not enforced inside the component itself; you have to call ConstrainOrthonormal() from the training code to do this. All this component does is return the OrthonormalConstraint() value. If you set this to a negative value, it's like saying "for any value", i.e. it will constrain the parameter matrix to be closer to "any alpha" times a semi-orthogonal matrix, without changing its overall norm. Options to the natural gradient (you won't normally have to set these, the defaults are suitable): num-samples-history Number of frames used as the time-constant to determine how 'up-to-date' the Fisher-matrix estimates are. Smaller -> more up-to-date, but more noisy. default=2000. alpha Constant that determines how much we smooth the Fisher-matrix estimates with the unit matrix. Larger means more smoothing. default=4.0 rank-in Rank used in low-rank-plus-unit estimate of Fisher matrix in the input space. default=20. rank-out Rank used in low-rank-plus-unit estimate of Fisher matrix in the output-derivative space. default=80. update-period Determines the period (in minibatches) with which we update the Fisher-matrix estimates; making this > 1 saves a little time in training. default=4. */ class NaturalGradientAffineComponent: public AffineComponent { public: virtual std::string Type() const { return "NaturalGradientAffineComponent"; } virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; // this constructor does not really initialize, use InitFromConfig() or Read(). NaturalGradientAffineComponent() { } void InitFromConfig(ConfigLine *cfl); virtual std::string Info() const; virtual Component* Copy() const; virtual void Scale(BaseFloat scale); virtual void Add(BaseFloat alpha, const Component &other); virtual void FreezeNaturalGradient(bool freeze); virtual void ConsolidateMemory(); // copy constructor explicit NaturalGradientAffineComponent( const NaturalGradientAffineComponent &other); NaturalGradientAffineComponent( const CuMatrixBase<BaseFloat> &linear_params, const CuVectorBase<BaseFloat> &bias_params); private: // disallow assignment operator. NaturalGradientAffineComponent &operator= ( const NaturalGradientAffineComponent&); OnlineNaturalGradient preconditioner_in_; OnlineNaturalGradient preconditioner_out_; virtual void Update( const std::string &debug_info, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_deriv); }; /* LinearComponent represents a linear (matrix) transformation of its input, with a matrix as its trainable parameters. It's the same as NaturalGradientAffineComponent, but without the bias term. Configuration values accepted by this component: Values inherited from UpdatableComponent (see its declaration in nnet-component-itf for details): learning-rate learning-rate-factor max-change Values used in initializing the component's parameters: input-dim e.g. input-dim=1024. The input dimension. output-dim e.g. output-dim=1024. The output dimension. param-stddev e.g. param-stddev=0.025. The standard deviation used to randomly initialize the linear parameters (as Gaussian random values * param-stddev). Defaults to 1/sqrt(input-dim), which is Glorot initialization. matrix e.g. matrix=foo/bar/init.mat May be used as an alternative to (input-dim, output-dim, param-stddev, bias-stddev, bias-mean) to initialize the parameters. Dimension is output-dim by (input-dim + 1), last column is interpreted as the bias. orthonormal-constraint=0.0 If you set this to 1.0, then the linear_params_ matrix will be (approximately) constrained during training to have orthonormal rows (or columns, whichever is fewer).. it turns out the real name for this is a "semi-orthogonal" matrix. You can choose a positive nonzero value different than 1.0 to have a scaled semi-orthgonal matrix, i.e. with singular values at the selected value (e.g. 0.5, or 2.0). This is not enforced inside the component itself; you have to call ConstrainOrthonormal() from the training code to do this. All this component does is return the OrthonormalConstraint() value. If you set this to a negative value, it's like saying "for any value", i.e. it will constrain the parameter matrix to be closer to "any alpha" times a semi-orthogonal matrix, without changing its overall norm. Options to the natural gradient (you won't normally have to set these, the defaults are suitable): use-natural-gradient=true Set this to false to disable the natural-gradient update entirely (it will do regular SGD). num-samples-history Number of frames used as the time-constant to determine how 'up-to-date' the Fisher-matrix estimates are. Smaller -> more up-to-date, but more noisy. default=2000. alpha Constant that determines how much we smooth the Fisher-matrix estimates with the unit matrix. Larger means more smoothing. default=4.0 rank-in Rank used in low-rank-plus-unit estimate of Fisher matrix in the input space. default=20. rank-out Rank used in low-rank-plus-unit estimate of Fisher matrix in the output-derivative space. default=80. update-period Determines after with what frequency (in minibatches) we update the Fisher-matrix estimates; making this > 1 saves a little time in training. default=4. */ class LinearComponent: public UpdatableComponent { public: virtual int32 InputDim() const { return params_.NumCols(); } virtual int32 OutputDim() const { return params_.NumRows(); } virtual std::string Type() const { return "LinearComponent"; } virtual int32 Properties() const { return kSimpleComponent|kUpdatableComponent|kBackpropNeedsInput| kPropagateAdds|kBackpropAdds; } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; // this constructor does not really initialize, use InitFromConfig() or Read(). LinearComponent() { } void InitFromConfig(ConfigLine *cfl); virtual std::string Info() const; virtual Component* Copy() const; virtual void Scale(BaseFloat scale); virtual void Add(BaseFloat alpha, const Component &other); virtual void PerturbParams(BaseFloat stddev); virtual BaseFloat DotProduct(const UpdatableComponent &other) const; virtual int32 NumParameters() const; virtual void Vectorize(VectorBase<BaseFloat> *params) const; virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms); virtual void FreezeNaturalGradient(bool freeze); virtual void ConsolidateMemory(); // copy constructor explicit LinearComponent(const LinearComponent &other); explicit LinearComponent(const CuMatrix<BaseFloat> ¶ms); BaseFloat OrthonormalConstraint() const { return orthonormal_constraint_; } CuMatrixBase<BaseFloat> &Params() { return params_; } const CuMatrixBase<BaseFloat> &Params() const { return params_; } private: // disallow assignment operator. LinearComponent &operator= ( const LinearComponent&); CuMatrix<BaseFloat> params_; BaseFloat orthonormal_constraint_; // If true (and if no this->is_gradient_), use natural gradient updates. bool use_natural_gradient_; OnlineNaturalGradient preconditioner_in_; OnlineNaturalGradient preconditioner_out_; }; /// FixedAffineComponent is an affine transform that is supplied /// at network initialization time and is not trainable. class FixedAffineComponent: public Component { public: FixedAffineComponent() { } virtual std::string Type() const { return "FixedAffineComponent"; } virtual std::string Info() const; // Copy constructor from AffineComponent-- can be used when we're done // training a particular part of the model and want to efficiently disable // further training. FixedAffineComponent(const AffineComponent &c); /// matrix should be of size input-dim+1 to output-dim, last col is offset void Init(const CuMatrixBase<BaseFloat> &matrix); // The ConfigLine cfl contains just the option matrix=<string>, // where the string is the filename of a Kaldi-format matrix to read. virtual void InitFromConfig(ConfigLine *cfl); virtual int32 Properties() const { return kSimpleComponent|kBackpropAdds; } virtual int32 InputDim() const { return linear_params_.NumCols(); } virtual int32 OutputDim() const { return linear_params_.NumRows(); } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual Component* Copy() const; virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; const CuMatrix<BaseFloat> &LinearParams() const { return linear_params_; } const CuVector<BaseFloat> &BiasParams() const { return bias_params_; } protected: friend class AffineComponent; CuMatrix<BaseFloat> linear_params_; CuVector<BaseFloat> bias_params_; KALDI_DISALLOW_COPY_AND_ASSIGN(FixedAffineComponent); }; /// SumGroupComponent is used to sum up groups of posteriors. /// It's used to introduce a kind of Gaussian-mixture-model-like /// idea into neural nets. This is basically a degenerate case of /// MixtureProbComponent; we had to implement it separately to /// be efficient for CUDA (we can use this one regardless whether /// we have CUDA or not; it's the normal case we want anyway). /// /// There are two forms of initialization in a config file: one /// where the number of elements are specified for each group /// individually as a vector, and one where only the total input /// dimension and the output dimension (number of groups) is specified. /// The second is used when all groups have the same size. class SumGroupComponent: public Component { public: virtual int32 InputDim() const { return input_dim_; } virtual int32 OutputDim() const { return output_dim_; } void Init(const std::vector<int32> &sizes); // the vector is of the input dim // (>= 1) for each output dim. void Init(int32 input_dim, int32 output_dim); void GetSizes(std::vector<int32> *sizes) const; // Get a vector saying, for // each output-dim, how many // inputs were summed over. virtual void InitFromConfig(ConfigLine *cfl); SumGroupComponent() { } virtual std::string Type() const { return "SumGroupComponent"; } virtual int32 Properties() const { return kSimpleComponent; } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual Component* Copy() const; virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; private: KALDI_DISALLOW_COPY_AND_ASSIGN(SumGroupComponent); // Note: Int32Pair is just struct{ int32 first; int32 second }; it's defined // in cu-matrixdim.h as extern "C" which is needed for the CUDA interface. CuArray<Int32Pair> indexes_; // for each output index, the (start, end) input // index. CuArray<int32> reverse_indexes_; // for each input index, the output index. int32 input_dim_; int32 output_dim_; }; /// FixedScaleComponent applies a fixed per-element scale; it's similar /// to the Rescale component in the nnet1 setup (and only needed for nnet1 /// model conversion). class FixedScaleComponent: public Component { public: FixedScaleComponent() { } virtual std::string Type() const { return "FixedScaleComponent"; } virtual std::string Info() const; virtual int32 Properties() const { return kSimpleComponent|kPropagateInPlace|kBackpropInPlace; } void Init(const CuVectorBase<BaseFloat> &scales); // The ConfigLine cfl contains only the option scales=<string>, // where the string is the filename of a Kaldi-format matrix to read. virtual void InitFromConfig(ConfigLine *cfl); virtual int32 InputDim() const { return scales_.Dim(); } virtual int32 OutputDim() const { return scales_.Dim(); } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &, // in_value const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *, // to_update CuMatrixBase<BaseFloat> *in_deriv) const; virtual Component* Copy() const; virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; const CuVector<BaseFloat> &Scales() const { return scales_; } protected: CuVector<BaseFloat> scales_; KALDI_DISALLOW_COPY_AND_ASSIGN(FixedScaleComponent); }; /// FixedBiasComponent applies a fixed per-element bias; it's similar /// to the AddShift component in the nnet1 setup (and only needed for nnet1 /// model conversion. class FixedBiasComponent: public Component { public: FixedBiasComponent() { } virtual std::string Type() const { return "FixedBiasComponent"; } virtual std::string Info() const; virtual int32 Properties() const { return kSimpleComponent|kPropagateInPlace|kBackpropInPlace; } void Init(const CuVectorBase<BaseFloat> &scales); // The ConfigLine cfl contains only the option bias=<string>, // where the string is the filename of a Kaldi-format matrix to read. virtual void InitFromConfig(ConfigLine *cfl); virtual int32 InputDim() const { return bias_.Dim(); } virtual int32 OutputDim() const { return bias_.Dim(); } using Component::Propagate; // to avoid name hiding virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &, // in_value, const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *, // to_update CuMatrixBase<BaseFloat> *in_deriv) const; virtual Component* Copy() const; virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; protected: CuVector<BaseFloat> bias_; KALDI_DISALLOW_COPY_AND_ASSIGN(FixedBiasComponent); }; /** NoOpComponent just duplicates its input. We don't anticipate this being used very often, but it may sometimes make your life easier. Config parameters: dim E.g. dim=1024. Required. backprop-scale Defaults to 1.0. May be set to a different value to scale the derivatives being backpropagated. */ class NoOpComponent: public Component { public: explicit NoOpComponent(const NoOpComponent &other): dim_(other.dim_), backprop_scale_(other.backprop_scale_) { } NoOpComponent() { } virtual std::string Type() const { return "NoOpComponent"; } virtual int32 Properties() const { return kSimpleComponent|kPropagateInPlace|kBackpropInPlace; } virtual int32 InputDim() const { return dim_; } virtual int32 OutputDim() const { return dim_; } virtual Component *Copy() { return new NoOpComponent(*this); } virtual void InitFromConfig(ConfigLine *cfl); virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; virtual std::string Info() const; virtual Component* Copy() const { return new NoOpComponent(*this); } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &, //in_value const CuMatrixBase<BaseFloat> &, // out_value, const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; private: int32 dim_; BaseFloat backprop_scale_; NoOpComponent &operator = (const NoOpComponent &other); // Disallow. }; /** SumBlockComponent sums over blocks of its input: for instance, if you create one with the config "input-dim=400 output-dim=100", its output will be the sum over the 4 100-dimensional blocks of the input. The "scale" config parameter may be used if you want to do averaging instead of summing, e.g. "input-dim=400 output-dim=100 scale=0.25" will accomplish averaging. Accepted values on its config-file line are: input-dim The input dimension. Required. output-dim The block dimension. Required. Must divide input-dim. scale A scaling factor on the output. Defaults to 1.0. */ class SumBlockComponent: public Component { public: explicit SumBlockComponent(const SumBlockComponent &other); SumBlockComponent() { } virtual std::string Type() const { return "SumBlockComponent"; } virtual int32 Properties() const { return kSimpleComponent|kPropagateAdds|kBackpropAdds; } virtual void InitFromConfig(ConfigLine *cfl); virtual int32 InputDim() const { return input_dim_; } virtual int32 OutputDim() const { return output_dim_; } virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; virtual std::string Info() const; virtual Component* Copy() const { return new SumBlockComponent(*this); } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &, //in_value const CuMatrixBase<BaseFloat> &, // out_value, const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; private: int32 input_dim_; int32 output_dim_; BaseFloat scale_; SumBlockComponent &operator = (const SumBlockComponent &other); // Disallow. }; /* ClipGradientComponent just duplicates its input, but clips gradients during backpropagation if they cross a predetermined threshold. This component will be used to prevent gradient explosion problem in recurrent neural networks. Configuration values accepted: dim Dimension of this component, e.g. 1024 clipping-threshold Threshold to be used for clipping. It could correspond to max-row-norm (if norm_based_clipping_ == true) or max-absolute-value (otherwise). norm-based-clipping If true, the max-row-norm will be clipped. Else element-wise absolute value clipping is done. self-repair-clipped-proportion-threshold The threshold of clipped-proportion for self-repair mechanism to be activated. The self-repair mechanism adds a term (proportional to [-(input vector - self_repair_target_)]) to in-deriv, attempting to shrink the maginitude of the input towards self_repair_target_ (e.g. 0.0 or 0.5). The default value is 1.0. self-repair-target The target value towards which self-repair is trying to set for in-deriv. The default value is 0.0. self-repair-scale Scale for the self-repair mechanism; see comments above. The default value is 0.0, but we usually set this to 1.0e-05 (or occasionally 1.0e-04) in the scripts. */ class ClipGradientComponent: public Component { public: ClipGradientComponent(int32 dim, BaseFloat clipping_threshold, bool norm_based_clipping, BaseFloat self_repair_clipped_proportion_threshold, BaseFloat self_repair_target, BaseFloat self_repair_scale, int32 num_clipped, int32 count, int32 num_self_repaired, int32 num_backpropped) { Init(dim, clipping_threshold, norm_based_clipping, self_repair_clipped_proportion_threshold, self_repair_target, self_repair_scale, num_clipped, count, num_self_repaired, num_backpropped);} ClipGradientComponent(): dim_(0), clipping_threshold_(-1), norm_based_clipping_(false), self_repair_clipped_proportion_threshold_(1.0), self_repair_target_(0.0), self_repair_scale_(0.0), num_clipped_(0), count_(0), num_self_repaired_(0), num_backpropped_(0) { } virtual int32 InputDim() const { return dim_; } virtual int32 OutputDim() const { return dim_; } virtual void InitFromConfig(ConfigLine *cfl); void Init(int32 dim, BaseFloat clipping_threshold, bool norm_based_clipping, BaseFloat self_repair_clipped_proportion_threshold, BaseFloat self_repair_target, BaseFloat self_repair_scale, int32 num_clipped, int32 count, int32 num_self_repaired, int32 num_backpropped); virtual std::string Type() const { return "ClipGradientComponent"; } virtual int32 Properties() const { return kSimpleComponent|kPropagateInPlace|kBackpropInPlace| kBackpropNeedsInput; } virtual void ZeroStats(); virtual Component* Copy() const { return new ClipGradientComponent(dim_, clipping_threshold_, norm_based_clipping_, self_repair_clipped_proportion_threshold_, self_repair_target_, self_repair_scale_, num_clipped_, count_, num_self_repaired_, num_backpropped_);} virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &, // out_value, const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void Scale(BaseFloat scale); virtual void Add(BaseFloat alpha, const Component &other); virtual void Read(std::istream &is, bool binary); // This Read function // requires that the Component has the correct type. /// Write component to stream virtual void Write(std::ostream &os, bool binary) const; virtual std::string Info() const; virtual ~ClipGradientComponent() { if (num_self_repaired_ > 0) KALDI_LOG << "ClipGradientComponent(node_name=" << debug_info_ << ")'s self-repair was activated " << num_self_repaired_ << " time(s) out of " << num_backpropped_ << " times of calling Backprop() in this training job."; } private: int32 dim_; // input/output dimension BaseFloat clipping_threshold_; // threshold to be used for clipping // could correspond to max-row-norm (if // norm_based_clipping_ == true) or // max-absolute-value (otherwise) bool norm_based_clipping_; // if true the max-row-norm will be clipped // else element-wise absolute value clipping is // done // some configuration values relating to self-repairing. BaseFloat self_repair_clipped_proportion_threshold_; // the threshold of // clipped-proportion // for self-repair to be // activated BaseFloat self_repair_target_; // the target value towards which self-repair // is trying to set for in-deriv BaseFloat self_repair_scale_; // constant scaling the self-repair vector std::string debug_info_; // component-node name, used in the destructor to // print out stats of self-repair // this function is called from Backprop code, and only does something if the // self-repair-scale config value is set and the current clipped proportion // exceeds the threshold. What it does is to add a term to in-deriv that // forces the input to the ClipGradientComponent to be close to some small // value (e.g., 0.0 or 0.5, depending on what the input is, e.g., // Sigmoid or Tanh or Affine). The hope is that if the input is forced to be // small, the parameters on the path will also tend to be small, which may // help tamp down the divergence caused by gradient explosion. void RepairGradients(const std::string &debug_info, const CuMatrixBase<BaseFloat> &in_value, CuMatrixBase<BaseFloat> *in_deriv, ClipGradientComponent *to_update) const; ClipGradientComponent &operator = (const ClipGradientComponent &other); // Disallow. protected: // variables to store stats // An element corresponds to rows of derivative matrix, when // norm_based_clipping_ is true, // else it corresponds to each element of the derivative matrix // Note: no stats are stored when norm_based_clipping_ is false int32 num_clipped_; // number of elements which were clipped int32 count_; // number of elements which were processed int32 num_self_repaired_; // number of times self-repair is activated int32 num_backpropped_; //number of times backprop is called }; /** PermuteComponent changes the order of the columns (i.e. the feature or activation dimensions). Output dimension i is mapped to input dimension column_map_[i], so it's like doing: for each row: for each feature/activation dimension i: output(row, i) = input(row, column_map_[i]). The only config value it accepts is 'column-map', e.g.: column-map=0,10,1,11,...,9,19 ... which should be a permutation of a contiguous block of integers starting with 0 (i.e. something like '3,2,1,0' but not '0,4' or '0,0,2'). See the equation above for how it is used. */ class PermuteComponent: public Component { public: PermuteComponent() {} PermuteComponent(const std::vector<int32> &column_map) { Init(column_map); } virtual int32 InputDim() const { return column_map_.Dim(); } virtual int32 OutputDim() const { return column_map_.Dim(); } virtual void InitFromConfig(ConfigLine *cfl); void Init(const std::vector<int32> &column_map); virtual std::string Type() const { return "PermuteComponent"; } virtual int32 Properties() const { return kSimpleComponent; } virtual void ZeroStats() {} virtual Component* Copy() const; virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &, //in_value const CuMatrixBase<BaseFloat> &, // out_value, const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void Scale(BaseFloat scale) {} virtual void Add(BaseFloat alpha, const Component &other) {} virtual void Read(std::istream &is, bool binary); // This Read function // requires that the Component has the correct type. /// Write component to stream virtual void Write(std::ostream &os, bool binary) const; virtual std::string Info() const; private: // computes the reverse column map. Must not be called if column_map_.Dim() // == 0 void ComputeReverseColumnMap(); CuArray<int32> column_map_; // the following is a derived variable, not written to disk. // It is used in backprop. CuArray<int32> reverse_column_map_; PermuteComponent &operator = (const PermuteComponent &other); // Disallow. }; /** PerElementScaleComponent scales each dimension of its input with a separate trainable scale; it's like a linear component with a diagonal matrix. This version (and its child class NaturalGradientPerElementScaleComponent) requires the input for backprop. See also ScaleAndOffsetComponent. Accepted values on its config line, with defaults if applicable: vector If specified, the offsets will be read from this file ('vector' is interpreted as an rxfilename). dim The dimension that this component inputs and outputs. Only required if 'vector' is not specified. param-mean=1.0 Mean of randomly initialized offset parameters; should only be supplied if 'vector' is not supplied. param-stddev=0.0 Standard deviation of randomly initialized offset parameters; should only be supplied if 'vector' is not supplied. */ class PerElementScaleComponent: public UpdatableComponent { public: virtual int32 InputDim() const { return scales_.Dim(); } virtual int32 OutputDim() const { return scales_.Dim(); } virtual std::string Info() const; virtual void InitFromConfig(ConfigLine *cfl); PerElementScaleComponent() { } // use Init to really initialize. virtual std::string Type() const { return "PerElementScaleComponent"; } virtual int32 Properties() const { return kSimpleComponent|kUpdatableComponent|kBackpropNeedsInput| kPropagateInPlace|kBackpropInPlace; } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; virtual Component* Copy() const; // Some functions from base-class UpdatableComponent. virtual void Scale(BaseFloat scale); virtual void Add(BaseFloat alpha, const Component &other); virtual void PerturbParams(BaseFloat stddev); virtual BaseFloat DotProduct(const UpdatableComponent &other) const; virtual int32 NumParameters() const; virtual void Vectorize(VectorBase<BaseFloat> *params) const; virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms); // Some functions that are specific to this class. explicit PerElementScaleComponent(const PerElementScaleComponent &other); void Init(int32 dim, BaseFloat param_mean, BaseFloat param_stddev); void Init(std::string vector_filename); protected: // This function Update() is for extensibility; child classes may override // this, e.g. for natural gradient update. virtual void Update( const std::string &debug_info, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_deriv) { UpdateSimple(in_value, out_deriv); } // UpdateSimple is used when *this is a gradient. Child classes may override // this if needed, but typically won't need to. virtual void UpdateSimple( const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_deriv); const PerElementScaleComponent &operator = (const PerElementScaleComponent &other); // Disallow. CuVector<BaseFloat> scales_; }; /* PerElementOffsetComponent offsets each dimension of its input with a separate trainable bias; it's like an affine component with fixed weight matrix which is always equal to I. Accepted values on its config line, with defaults if applicable: vector If specified, the offsets will be read from this file ('vector' is interpreted as an rxfilename). dim The dimension that this component inputs and outputs. block-dim [Should not be specified if you specify 'vector']. If specified, must be nonzero and divide 'dim'. In this case, blocks of the input of this dimension will get the same offset. Useful in CNNs. param-mean=0.0 Mean of randomly initialized offset parameters; should only be supplied if 'vector' is not supplied. param-stddev=0.0 Standard deviation of randomly initialized offset parameters; should only be supplied if 'vector' is not supplied. use-natural-gradient=true If true, we will use natural gradient in the update. Note: this is different from PerElementScaleComponent, which does not support natural gradient directly-- in that case you have to use NaturalGradientPerElementScaleComponent if you want to use natural gradient update. Values inherited from UpdatableComponent (see its declaration in nnet-component-itf for details): learning-rate learning-rate-factor max-change */ class PerElementOffsetComponent: public UpdatableComponent { public: virtual int32 InputDim() const { return dim_; } virtual int32 OutputDim() const { return dim_; } virtual std::string Info() const; virtual void InitFromConfig(ConfigLine *cfl); PerElementOffsetComponent() { } // use Init to really initialize. virtual std::string Type() const { return "PerElementOffsetComponent"; } virtual int32 Properties() const { return kSimpleComponent|kUpdatableComponent| kBackpropInPlace|kPropagateInPlace| (dim_ != offsets_.Dim() ? kOutputContiguous : 0); } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &, // in_value const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; virtual Component* Copy() const; // Some functions from base-class UpdatableComponent. virtual void Scale(BaseFloat scale); virtual void Add(BaseFloat alpha, const Component &other); virtual void PerturbParams(BaseFloat stddev); virtual BaseFloat DotProduct(const UpdatableComponent &other) const; virtual int32 NumParameters() const; virtual void Vectorize(VectorBase<BaseFloat> *params) const; virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms); // Copy constructor explicit PerElementOffsetComponent(const PerElementOffsetComponent &other); protected: const PerElementOffsetComponent &operator = (const PerElementOffsetComponent &other); // Disallow. CuVector<BaseFloat> offsets_; // dim_ will normally be the same as offsets_ dim, but in general will be an // integer multiple of it (in case the same offset vector is applied to // successive blocks of the input). int32 dim_; bool use_natural_gradient_; OnlineNaturalGradient preconditioner_; }; // ConstantFunctionComponent returns constant function of its input, // i.e. its output does not depend on its input. It is the same as // an affine component with the linear term fixed at zero. // It is optionally trainable, and optionally you can use natural // gradient. The input is required only because it's more convenient // to make SimpleComponents [but see ConstantComponent, which requires // no inputs]. class ConstantFunctionComponent: public UpdatableComponent { public: virtual int32 InputDim() const { return input_dim_; } virtual int32 OutputDim() const { return output_.Dim(); } virtual std::string Info() const; // possible parameter values with their defaults: // input-dim=-1 is-updatable=true use-natural-gradient=true output-dim=-1 // output-mean=0 output-stddev=0 virtual void InitFromConfig(ConfigLine *cfl); ConstantFunctionComponent(); ConstantFunctionComponent(const ConstantFunctionComponent &other); virtual std::string Type() const { return "ConstantFunctionComponent"; } virtual int32 Properties() const { return kSimpleComponent| (is_updatable_ ? kUpdatableComponent : 0) | (InputDim() == OutputDim() ? kPropagateInPlace: 0) | kBackpropAdds; } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &, // in_value const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; virtual Component* Copy() const; // Some functions from base-class UpdatableComponent. virtual void Scale(BaseFloat scale); virtual void Add(BaseFloat alpha, const Component &other); virtual void PerturbParams(BaseFloat stddev); virtual BaseFloat DotProduct(const UpdatableComponent &other) const; virtual int32 NumParameters() const; virtual void Vectorize(VectorBase<BaseFloat> *params) const; virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms); virtual void ConsolidateMemory(); private: int32 input_dim_; // the output value-- a vector. CuVector<BaseFloat> output_; bool is_updatable_; // if true, and if updatable, do natural-gradient update. bool use_natural_gradient_; OnlineNaturalGradient preconditioner_; const ConstantFunctionComponent &operator = (const ConstantFunctionComponent &other); // Disallow. }; /** NaturalGradientPerElementScaleComponent is like PerElementScaleComponent but it uses a natural gradient update for the per-element scales. Accepted values on its config line, with defaults if applicable: vector If specified, the offsets will be read from this file ('vector' is interpreted as an rxfilename). dim The dimension that this component inputs and outputs. Only required if 'vector' is not specified. param-mean=1.0 Mean of randomly initialized offset parameters; should only be supplied if 'vector' is not supplied. param-stddev=0.0 Standard deviation of randomly initialized offset parameters; should only be supplied if 'vector' is not supplied. And the natural-gradient-related configuration values: rank=8 update-period=10 num-samples-history=2000.0 alpha=4.0 */ class NaturalGradientPerElementScaleComponent: public PerElementScaleComponent { public: virtual std::string Info() const; virtual void InitFromConfig(ConfigLine *cfl); NaturalGradientPerElementScaleComponent() { } // use Init to really initialize. virtual std::string Type() const { return "NaturalGradientPerElementScaleComponent"; } virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; virtual void FreezeNaturalGradient(bool freeze); virtual Component* Copy() const; // Some functions that are specific to this class: explicit NaturalGradientPerElementScaleComponent( const NaturalGradientPerElementScaleComponent &other); void Init(int32 dim, BaseFloat param_mean, BaseFloat param_stddev, int32 rank, int32 update_period, BaseFloat num_samples_history, BaseFloat alpha); void Init(std::string vector_filename, int32 rank, int32 update_period, BaseFloat num_samples_history, BaseFloat alpha); void ConsolidateMemory(); private: // unlike the NaturalGradientAffineComponent, there is only one dimension to // consider as the parameters are a vector not a matrix, so we only need one // preconditioner. // The preconditioner stores its own configuration values; we write and read // these, but not the preconditioner object itself. OnlineNaturalGradient preconditioner_; // Override of the parent-class Update() function, called only // if this->is_gradient_ = false; this implements the natural // gradient update. virtual void Update( const std::string &debug_info, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_deriv); const NaturalGradientPerElementScaleComponent &operator = (const NaturalGradientPerElementScaleComponent &other); // Disallow. }; /* ScaleAndOffsetComponent implements a per-element scale and offset. It may be useful just after BatchNormComponent, as the trainable offset and scale of batch-norm. Note: by default this includes natural gradient for the update. Currently accepted values on its config line are as follows. Major configuration values: dim The feature-dimension that the component takes as input, and outputs. block-dim If set, this must be set to a value that divides 'dim'. In this case, the same offset and scale will be applied to each block, and the number of parameters will be 2*block-dim instead of 2*dim. There is currently no way to configure what values will be used for the initialization and it is hardcoded to zero offset, unit scale. If in future more configurability is needed, we'll address it then. Values inherited from UpdatableComponent (see its declaration in nnet-component-itf for details): learning-rate learning-rate-factor max-change Options to the natural gradient (you won't normally have to set these, the defaults are suitable): use-natural-gradient Defaults to true; false turns off the application of natural gradient update to this layer. rank Rank used in low-rank-plus-unit estimate of Fisher matrix in the input space. default=20. */ class ScaleAndOffsetComponent: public UpdatableComponent { public: virtual int32 InputDim() const { return dim_; } virtual int32 OutputDim() const { return dim_; } virtual std::string Info() const; virtual void InitFromConfig(ConfigLine *cfl); ScaleAndOffsetComponent() { } // use Init to really initialize. virtual std::string Type() const { return "ScaleAndOffsetComponent"; } virtual int32 Properties() const { // Note: the backprop would most naturally consume the input, but we // have arranged things so that the backprop consumes the output value // instead; this allows less memory use, since in typical configurations, // this will be followed by an affine component which needs its input // for the backprop (so requiring it to be present adds no extra // burden). return kSimpleComponent|kUpdatableComponent| kBackpropInPlace|kPropagateInPlace| kBackpropNeedsOutput| (dim_ != scales_.Dim() ? (kInputContiguous|kOutputContiguous) : 0); } virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &, // in_value const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; virtual Component* Copy() const { return new ScaleAndOffsetComponent(*this); } // Some functions from base-class UpdatableComponent. virtual void Scale(BaseFloat scale); virtual void Add(BaseFloat alpha, const Component &other); virtual void PerturbParams(BaseFloat stddev); virtual BaseFloat DotProduct(const UpdatableComponent &other) const; virtual int32 NumParameters() const { return 2 * scales_.Dim(); } virtual void Vectorize(VectorBase<BaseFloat> *params) const; virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms); virtual void ConsolidateMemory(); // copy constructor explicit ScaleAndOffsetComponent(const ScaleAndOffsetComponent &other); private: // Internal version of propagate, requires in.NumCols() equal to scales_.Dim() // (if batch-dim was set, this may require the caller to reshape the input and // output. void PropagateInternal(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; // Internal version of backprop, where the num-cols of the // argument matrices are equal to scales_.Dim(). void BackpropInternal(const std::string &debug_info, const CuMatrixBase<BaseFloat> &out_value, const CuMatrixBase<BaseFloat> &out_deriv, ScaleAndOffsetComponent *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; // We do this instead of defining a constant, which is a hassle in C++. inline BaseFloat Epsilon() const { return 1.0e-04; } // called from BackpropInternal if 'to_update' is non-NULL. void Update( const std::string &debug_info, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &out_deriv); const ScaleAndOffsetComponent &operator = (const ScaleAndOffsetComponent &other); // Disallow. // Note: dim_ is the dimension that the component takes as input // and output. It is an integer multiple of scales_.Dim(), // and will be the same as scales_.Dim() unless 'block-dim' // was specified on the config line. // (note: scales_.Dim() and offset_.Dim() will be the same). int32 dim_; // note: output is y(i) = scales_(i) * x(i) + offsets_(i). CuVector<BaseFloat> scales_; CuVector<BaseFloat> offsets_; bool use_natural_gradient_; OnlineNaturalGradient scale_preconditioner_; OnlineNaturalGradient offset_preconditioner_; }; /** CompositeComponent is a component representing a sequence of [simple] components. The config line would be something like the following (imagine this is all on one line): component name=composite1 type=CompositeComponent max-rows-process=2048 num-components=3 \ component1='type=BlockAffineComponent input-dim=1000 output-dim=10000 num-blocks=100' \ component2='type=RectifiedLinearComponent dim=10000' \ component3='type=BlockAffineComponent input-dim=10000 output-dim=1000 num-blocks=100' The reason you might want to use this component, instead of directly using the same sequence of components in the config file, is to save GPU memory (at the expense of more compute)-- because doing it like this means we have to re-do parts of the forward pass in the backprop phase, but we avoid using much memory for very long (and you can make the memory usage very small by making max-rows-process small). We inherit from UpdatableComponent just in case one or more of the components in the sequence are updatable. It is an error to nest a CompositeComponent inside a CompositeComponent. The same effect can be accomplished by specifying a smaller max-rows-process in a single CompositeComponent. */ class CompositeComponent: public UpdatableComponent { public: virtual int32 InputDim() const; virtual int32 OutputDim() const; virtual std::string Info() const; virtual void InitFromConfig(ConfigLine *cfl); virtual Component* Copy() const; CompositeComponent() { } // use Init() or InitFromConfig() to really initialize. // Initialize from this list of components; takes ownership of the pointers. void Init(const std::vector<Component*> &components, int32 max_rows_process); virtual std::string Type() const { return "CompositeComponent"; } // The properties depend on the properties of the constituent components. As // a special case, we never return kStoresStats in the properties: by default // we store things like activation stats (e.g. for nonlinear components like // ReLU) as part of the backprop. This means we may wastefully store stats // even when not requested, but it does save time as a separate StoreStats() // call would involve propagating the internals. virtual int32 Properties() const; virtual void* Propagate(const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) const; virtual void Backprop(const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase<BaseFloat> &in_value, const CuMatrixBase<BaseFloat> &, // out_value const CuMatrixBase<BaseFloat> &out_deriv, void *memo, Component *to_update, CuMatrixBase<BaseFloat> *in_deriv) const; // note, we don't implement StoreStats() as it would be inefficient. Instead, // by default we call StoreStats() on all members that have the flag set, // inside the Backprop. virtual void ZeroStats(); virtual void Read(std::istream &is, bool binary); virtual void Write(std::ostream &os, bool binary) const; // Don't implement Copy() at this level: implement it in the child class. // Some functions from base-class UpdatableComponent. virtual void SetUnderlyingLearningRate(BaseFloat lrate); virtual void SetActualLearningRate(BaseFloat lrate); virtual void SetAsGradient(); virtual void Scale(BaseFloat scale); virtual void Add(BaseFloat alpha, const Component &other); virtual void PerturbParams(BaseFloat stddev); virtual BaseFloat DotProduct(const UpdatableComponent &other) const; virtual int32 NumParameters() const; virtual void Vectorize(VectorBase<BaseFloat> *params) const; virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms); virtual void FreezeNaturalGradient(bool freeze); // note: we dont implement the StoreStats function as it would be quite // expensive; instead, by default we call StoreStats() for any components that // want to store stats, as part of the backprop pass. This is not 100% ideal // but it will usually do what you want. We can revisit this later if needed. // Functions to iterate over the internal components int32 NumComponents() const { return components_.size(); } /// Gets the ith component in this component. /// The ordering is the same as in the config line. The caller /// does not own the received component. const Component* GetComponent(int32 i) const; /// Sets the ith component. After this call, CompositeComponent owns /// the reference to the argument component. Frees the previous /// ith component. void SetComponent(int32 i, Component *component); virtual ~CompositeComponent() { DeletePointers(&components_); } private: // returns the stride type, kDefaultStride or kStrideEqualNumCols, // at the output of the i'th component. inline MatrixStrideType GetStrideType(int32 i) const; // returns true if at least one of 'components_' returns the kUpdatable flag // in its flags. bool IsUpdatable() const; // the maximum number of int32 max_rows_process_; std::vector<Component*> components_; }; } // namespace nnet3 } // namespace kaldi #endif |