Blame view

src/nnet3/nnet-test-utils.cc 72.4 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
  // nnet3/nnet-test-utils.cc
  
  // Copyright      2015  Johns Hopkins University (author: Daniel Povey)
  // Copyright      2015  Vijayaditya Peddinti
  // Copyright      2016  Daniel Galvez
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <iterator>
  #include <sstream>
  #include "nnet3/nnet-test-utils.h"
  #include "nnet3/nnet-utils.h"
  
  namespace kaldi {
  namespace nnet3 {
  
  
  // A super-simple case that is just a single affine component, no nonlinearity,
  // no splicing.
  void GenerateConfigSequenceSimplest(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    std::ostringstream os;
  
    int32 input_dim = 10 + Rand() % 20,
        output_dim = (opts.output_dim > 0 ?
                      opts.output_dim :
                      100 + Rand() % 200);
  
  
    os << "component name=affine1 type=AffineComponent input-dim="
       << input_dim << " output-dim=" << output_dim << std::endl;
  
    os << "input-node name=input dim=" << input_dim << std::endl;
    os << "component-node name=affine1_node component=affine1 input=input
  ";
    os << "output-node name=output input=affine1_node
  ";
    configs->push_back(os.str());
  }
  
  // A setup with context and an affine component, but no nonlinearity.
  void GenerateConfigSequenceSimpleContext(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    std::ostringstream os;
  
    std::vector<int32> splice_context;
    for (int32 i = -5; i < 4; i++)
      if (Rand() % 3 == 0)
        splice_context.push_back(i);
    if (splice_context.empty())
      splice_context.push_back(0);
  
    int32 input_dim = 10 + Rand() % 20,
        spliced_dim = input_dim * splice_context.size(),
        output_dim = (opts.output_dim > 0 ?
                      opts.output_dim :
                      100 + Rand() % 200);
  
    if (RandInt(0,1) == 0) {
      // do it the traditional way with an AffineComponent and an Append() expression.
      os << "component name=affine1 type=AffineComponent input-dim="
         << spliced_dim << " output-dim=" << output_dim << std::endl;
  
      os << "input-node name=input dim=" << input_dim << std::endl;
  
      os << "component-node name=affine1_node component=affine1 input=Append(";
      for (size_t i = 0; i < splice_context.size(); i++) {
        int32 offset = splice_context[i];
        os << "Offset(input, " << offset << ")";
        if (i + 1 < splice_context.size())
          os << ", ";
      }
      os << ")
  ";
      os << "output-node name=output input=affine1_node
  ";
    } else {
      os << "component name=tdnn1 type=TdnnComponent input-dim="
         << input_dim << " output-dim=" << output_dim
         << " time-offsets=";
      for (size_t i = 0; i < splice_context.size(); i++) {
        if (i>0) os << ',';
        os << splice_context[i];
      }
      os << " use-bias=" << (RandInt(0,1) == 0 ? "true":"false")
         << " use-natural-gradient="  << (RandInt(0,1) == 0 ? "true":"false")
         << std::endl;
      os << "input-node name=input dim=" << input_dim << std::endl;
      os << "component-node name=tdnn1_node component=tdnn1 input=input
  ";
      os << "output-node name=output input=tdnn1_node
  ";
    }
    configs->push_back(os.str());
  }
  
  
  
  // A simple case, just to get started.
  // Generate a single config with one input, splicing, and one hidden layer.
  // Also sometimes generate a part of the config that adds a new hidden layer.
  void GenerateConfigSequenceSimple(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    std::ostringstream os;
  
    std::vector<int32> splice_context;
    for (int32 i = -5; i < 4; i++)
      if (Rand() % 3 == 0)
        splice_context.push_back(i);
    if (splice_context.empty())
      splice_context.push_back(0);
  
    int32 input_dim = 10 + Rand() % 20,
        output_dim = (opts.output_dim > 0 ?
                      opts.output_dim :
                      100 + Rand() % 200),
        hidden_dim = 40 + Rand() % 50;
    int32 ivector_dim = 10 + Rand() % 20;
    if (RandInt(0, 1) == 0 || !opts.allow_ivector)
      ivector_dim = 0;
    int32 spliced_dim = input_dim * splice_context.size() + ivector_dim;
  
    bool use_final_nonlinearity = (opts.allow_final_nonlinearity &&
                                   RandInt(0, 1) == 0);
    bool use_batch_norm = (RandInt(0, 1) == 0);
  
    os << "component name=affine1 type=NaturalGradientAffineComponent input-dim="
       << spliced_dim << " output-dim=" << hidden_dim << std::endl;
    os << "component name=relu1 type=RectifiedLinearComponent dim="
       << hidden_dim << std::endl;
    if (use_batch_norm) {
      int32 block_dim = (hidden_dim % 2 == 0 ? hidden_dim / 2 : hidden_dim);
      os << "component name=batch-norm type=BatchNormComponent dim="
         << hidden_dim << " block-dim=" << block_dim
         << " target-rms=2.0";
      if (RandInt(0, 1) == 0)
        os << " epsilon=3.0";
      os << '
  ';
    }
    os << "component name=final_affine type=NaturalGradientAffineComponent input-dim="
       << hidden_dim << " output-dim=" << output_dim << std::endl;
    if (use_final_nonlinearity) {
      if (Rand() % 2 == 0) {
        os << "component name=logsoftmax type=SoftmaxComponent dim="
           << output_dim << std::endl;
      } else {
        os << "component name=logsoftmax type=LogSoftmaxComponent dim="
           << output_dim << std::endl;
      }
    }
    os << "input-node name=input dim=" << input_dim << std::endl;
    if (ivector_dim != 0)
      os << "input-node name=ivector dim=" << ivector_dim << std::endl;
  
    os << "component-node name=affine1_node component=affine1 input=Append(";
    if (ivector_dim != 0)
      os << "ReplaceIndex(ivector, t, 0), ";
    for (size_t i = 0; i < splice_context.size(); i++) {
      int32 offset = splice_context[i];
      if (RandInt(0, 1) == 0) {
        os << "Offset(input, " << offset << ")";
      } else {
        // testing the Scale() expression.
        os << "Scale(-1, Offset(input, " << offset << "))";
      }
      if (i + 1 < splice_context.size())
        os << ", ";
    }
    os << ")
  ";
    if (RandInt(0, 1) == 0) {
      os << "component-node name=nonlin1 component=relu1 input=affine1_node
  ";
    } else if (RandInt(0, 1) == 0) {
      os << "component-node name=nonlin1 component=relu1 input=Scale(-1.0, affine1_node)
  ";
    } else {
      os << "component-node name=nonlin1 component=relu1 input=Sum(Const(1.0, "
         << hidden_dim << "), Scale(-1.0, affine1_node))
  ";
    }
    if (use_batch_norm) {
      os << "component-node name=batch-norm component=batch-norm input=nonlin1
  ";
      os << "component-node name=final_affine component=final_affine input=batch-norm
  ";
    } else {
      os << "component-node name=final_affine component=final_affine input=nonlin1
  ";
    }
    if (use_final_nonlinearity) {
      os << "component-node name=output_nonlin component=logsoftmax input=final_affine
  ";
      os << "output-node name=output input=output_nonlin
  ";
    } else {
      os << "output-node name=output input=final_affine
  ";
    }
    configs->push_back(os.str());
  
    if ((Rand() % 2) == 0) {
      std::ostringstream os2;
      os2 << "component name=affine2 type=NaturalGradientAffineComponent input-dim="
          << hidden_dim << " output-dim=" << hidden_dim << std::endl;
      os2 << "component name=relu2 type=RectifiedLinearComponent dim="
          << hidden_dim << std::endl;
      // regenerate the final_affine component when we add the new config.
      os2 << "component name=final_affine type=NaturalGradientAffineComponent input-dim="
          << hidden_dim << " output-dim=" << output_dim << std::endl;
      os2 << "component-node name=affine2 component=affine2 input=nonlin1
  ";
      os2 << "component-node name=relu2 component=relu2 input=affine2
  ";
      os2 << "component-node name=final_affine component=final_affine input=relu2
  ";
      configs->push_back(os2.str());
    }
  }
  
  
  void GenerateConfigSequenceStatistics(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    int32 input_dim = RandInt(10, 30),
        input_period = RandInt(1, 3),
        stats_period = input_period * RandInt(1, 3),
        left_context = stats_period * RandInt(1, 10),
        right_context = stats_period * RandInt(1, 10),
        log_count_features = RandInt(0, 3);
    BaseFloat variance_floor = RandInt(1, 10) * 1.0e-10;
    bool output_stddevs = (RandInt(0, 1) == 0);
  
    int32 raw_stats_dim = 1 + input_dim + (output_stddevs ? input_dim : 0),
        pooled_stats_dim = log_count_features + input_dim +
          (output_stddevs ? input_dim : 0);
    std::ostringstream os;
    os << "input-node name=input dim=" << input_dim << std::endl;
    os << "component name=statistics-extraction type=StatisticsExtractionComponent "
       << "input-dim=" << input_dim << " input-period=" << input_period
       << " output-period=" << stats_period << " include-variance="
       << std::boolalpha << output_stddevs << "
  ";
  
    os << "component name=statistics-pooling type=StatisticsPoolingComponent "
       << "input-dim=" << raw_stats_dim << " input-period=" << stats_period
       << " left-context=" << left_context << " right-context=" << right_context
       << " num-log-count-features=" << log_count_features << " output-stddevs="
       << std::boolalpha << output_stddevs << " variance-floor="
       << variance_floor << "
  ";
  
    os << "component name=affine type=AffineComponent "
       << "input-dim=" << input_dim << " output-dim=" << pooled_stats_dim
       << "
  ";
  
    os << "component-node name=statistics-extraction component=statistics-extraction "
       << "input=input
  ";
    os << "component-node name=statistics-pooling component=statistics-pooling "
       << "input=statistics-extraction
  ";
    os << "component-node name=affine component=affine input=input
  ";
    os << "output-node name=output input=Sum(affine, Round(statistics-pooling, "
       << stats_period << "))
  ";
    configs->push_back(os.str());
  }
  
  // This generates a single config corresponding to an RNN.
  void GenerateConfigSequenceRnn(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    std::ostringstream os;
  
    std::vector<int32> splice_context;
    for (int32 i = -5; i < 4; i++)
      if (Rand() % 3 == 0)
        splice_context.push_back(i);
    if (splice_context.empty())
      splice_context.push_back(0);
  
    int32 input_dim = 10 + Rand() % 20,
        spliced_dim = input_dim * splice_context.size(),
        output_dim = (opts.output_dim > 0 ?
                      opts.output_dim :
                      100 + Rand() % 200),
        hidden_dim = 40 + Rand() % 50;
    os << "component name=affine1 type=NaturalGradientAffineComponent input-dim="
       << spliced_dim << " output-dim=" << hidden_dim << std::endl;
    if (RandInt(0, 1) == 0) {
      os << "component name=nonlin1 type=RectifiedLinearComponent dim="
         << hidden_dim << std::endl;
    } else {
      os << "component name=nonlin1 type=TanhComponent dim="
         << hidden_dim << std::endl;
    }
    os << "component name=recurrent_affine1 type=NaturalGradientAffineComponent input-dim="
       << hidden_dim << " output-dim=" << hidden_dim << std::endl;
    os << "component name=affine2 type=NaturalGradientAffineComponent input-dim="
       << hidden_dim << " output-dim=" << output_dim << std::endl;
    os << "component name=logsoftmax type=LogSoftmaxComponent dim="
       << output_dim << std::endl;
    os << "input-node name=input dim=" << input_dim << std::endl;
  
    os << "component-node name=affine1_node component=affine1 input=Append(";
    for (size_t i = 0; i < splice_context.size(); i++) {
      int32 offset = splice_context[i];
      os << "Offset(input, " << offset << ")";
      if (i + 1 < splice_context.size())
        os << ", ";
    }
    os << ")
  ";
    os << "component-node name=recurrent_affine1 component=recurrent_affine1 "
          "input=Offset(nonlin1, -1)
  ";
    os << "component-node name=nonlin1 component=nonlin1 "
          "input=Sum(affine1_node, IfDefined(recurrent_affine1))
  ";
    os << "component-node name=affine2 component=affine2 input=nonlin1
  ";
    os << "component-node name=output_nonlin component=logsoftmax input=affine2
  ";
    os << "output-node name=output input=output_nonlin
  ";
    configs->push_back(os.str());
  }
  
  
  
  // This generates a config sequence for what I *think* is a clockwork RNN, in
  // that different parts operate at different speeds.  The output layer is
  // evaluated every frame, but the internal RNN layer is evaluated every 3
  // frames.
  void GenerateConfigSequenceRnnClockwork(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    std::ostringstream os;
  
    std::vector<int32> splice_context;
    for (int32 i = -5; i < 4; i++)
      if (Rand() % 3 == 0)
        splice_context.push_back(i);
    if (splice_context.empty())
      splice_context.push_back(0);
  
    int32 input_dim = 10 + Rand() % 20,
        spliced_dim = input_dim * splice_context.size(),
        output_dim = (opts.output_dim > 0 ?
                      opts.output_dim :
                      100 + Rand() % 200),
        hidden_dim = 40 + Rand() % 50;
    os << "component name=affine1 type=NaturalGradientAffineComponent input-dim="
       << spliced_dim << " output-dim=" << hidden_dim << std::endl;
    os << "component name=nonlin1 type=RectifiedLinearComponent dim="
       << hidden_dim << std::endl;
    os << "component name=recurrent_affine1 type=NaturalGradientAffineComponent input-dim="
       << hidden_dim << " output-dim=" << hidden_dim << std::endl;
    // the suffix _0, _1, _2 equals the index of the output-frame modulo 3; there
    // are 3 versions of the final affine layer.  There was a paper by Vincent
    // Vanhoucke about something like this.
    os << "component name=final_affine_0 type=NaturalGradientAffineComponent input-dim="
       << hidden_dim << " output-dim=" << output_dim << std::endl;
    os << "component name=final_affine_1 type=NaturalGradientAffineComponent input-dim="
       << hidden_dim << " output-dim=" << output_dim << std::endl;
    os << "component name=final_affine_2 type=NaturalGradientAffineComponent input-dim="
       << hidden_dim << " output-dim=" << output_dim << std::endl;
    os << "component name=logsoftmax type=LogSoftmaxComponent dim="
       << output_dim << std::endl;
    os << "input-node name=input dim=" << input_dim << std::endl;
  
    os << "component-node name=affine1_node component=affine1 input=Append(";
    for (size_t i = 0; i < splice_context.size(); i++) {
      int32 offset = splice_context[i];
      os << "Offset(input, " << offset << ")";
      if (i + 1 < splice_context.size())
        os << ", ";
    }
    os << ")
  ";
    os << "component-node name=recurrent_affine1 component=recurrent_affine1 "
          "input=Offset(nonlin1, -1)
  ";
    os << "component-node name=nonlin1 component=nonlin1 "
          "input=Sum(affine1_node, IfDefined(recurrent_affine1))
  ";
    os << "component-node name=final_affine_0 component=final_affine_0 input=nonlin1
  ";
    os << "component-node name=final_affine_1 component=final_affine_1 input=Offset(nonlin1, -1)
  ";
    os << "component-node name=final_affine_2 component=final_affine_2 input=Offset(nonlin1, 1)
  ";
    os << "component-node name=output_nonlin component=logsoftmax input=Switch(final_affine_0, final_affine_1, final_affine_2)
  ";
    os << "output-node name=output input=output_nonlin
  ";
    configs->push_back(os.str());
  }
  
  
  
  // This generates a single config corresponding to an LSTM.
  // based on the equations in
  // Sak et. al. "LSTM based RNN architectures for LVCSR", 2014
  // We name the components based on the following equations (Eqs 7-15 in paper)
  //      i(t) = S(Wix * x(t) + Wir * r(t-1) + Wic * c(t-1) + bi)
  //      f(t) = S(Wfx * x(t) + Wfr * r(t-1) + Wfc * c(t-1) + bf)
  //      c(t) = {f(t) .* c(t-1)} + {i(t) .* g(Wcx * x(t) + Wcr * r(t-1) + bc)}
  //      o(t) = S(Wox * x(t) + Wor * r(t-1) + Woc * c(t) + bo)
  //      m(t) = o(t) .* h(c(t))
  //      r(t) = Wrm * m(t)
  //      p(t) = Wpm * m(t)
  //      y(t) = Wyr * r(t) + Wyp * p(t) + by
  // where S : sigmoid
  // matrix with feed-forward connections
  // from the input x(t)
  // W*x = [Wix^T, Wfx^T, Wcx^T, Wox^T]^T
  
  // matrix with recurrent (feed-back) connections
  // from the output projection
  // W*r = [Wir^T, Wfr^T, Wcr^T, Wor^T]^T
  
  // matrix to generate r(t) and p(t)
  // m(t)
  // W*m = [Wrm^T, Wpm^T]^T
  // matrix to generate y(t)
  // Wy* = [Wyr^T, Wyp^T]
  
  // Diagonal matrices with recurrent connections and feed-forward connections
  // from the cell output c(t) since these can be both recurrent and
  // feed-forward we dont combine the matrices
  // Wic, Wfc, Woc
  
  
  void GenerateConfigSequenceLstm(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    std::ostringstream os;
  
    std::vector<int32> splice_context;
    for (int32 i = -5; i < 4; i++)
      if (Rand() % 3 == 0)
        splice_context.push_back(i);
    if (splice_context.empty())
      splice_context.push_back(0);
  
    int32 input_dim = 10 + Rand() % 20,
        spliced_dim = input_dim * splice_context.size(),
        output_dim = (opts.output_dim > 0 ?
                      opts.output_dim :
                      100 + Rand() % 200),
        cell_dim = 40 + Rand() % 50,
        projection_dim = std::ceil(cell_dim / (Rand() % 10 + 1));
  
    os << "input-node name=input dim=" << input_dim << std::endl;
  
    // trainable cell value for start/end of file.
    os << "component name=c0 type=ConstantComponent"
       << " output-dim=" << cell_dim << std::endl;
  
  
    // Parameter Definitions W*(* replaced by - to have valid names)
    // Input gate control : Wi* matrices
    os << "component name=Wi-xr type=NaturalGradientAffineComponent"
       << " input-dim=" << spliced_dim + projection_dim
       << " output-dim=" << cell_dim << std::endl;
    os << "component name=Wic type=PerElementScaleComponent "
       << " dim=" << cell_dim << std::endl;
  
    // Forget gate control : Wf* matrices
    os << "component name=Wf-xr type=NaturalGradientAffineComponent"
       << " input-dim=" << spliced_dim + projection_dim
       << " output-dim=" << cell_dim << std::endl;
    os << "component name=Wfc type=PerElementScaleComponent "
       << " dim=" << cell_dim << std::endl;
  
    // Output gate control : Wo* matrices
    os << "component name=Wo-xr type=NaturalGradientAffineComponent"
       << " input-dim=" << spliced_dim + projection_dim
       << " output-dim=" << cell_dim  << std::endl;
    os << "component name=Woc type=PerElementScaleComponent "
       << " dim=" << cell_dim << std::endl;
  
    // Cell input matrices : Wc* matrices
    os << "component name=Wc-xr type=NaturalGradientAffineComponent"
       << " input-dim=" << spliced_dim + projection_dim
       << " output-dim=" << cell_dim  << std::endl;
  
  
  
    // projection matrices : Wrm and Wpm
    os << "component name=W-m type=NaturalGradientAffineComponent "
       << " input-dim=" << cell_dim
       << " output-dim=" << 2 * projection_dim << std::endl;
  
    // Output : Wyr and Wyp
    os << "component name=Wy- type=NaturalGradientAffineComponent "
       << " input-dim=" << 2 * projection_dim
       << " output-dim=" << cell_dim << std::endl;
  
    // Defining the diagonal matrices
    // Defining the final affine transform
    os << "component name=final_affine type=NaturalGradientAffineComponent "
       << "input-dim=" << cell_dim << " output-dim=" << output_dim << std::endl;
    os << "component name=logsoftmax type=LogSoftmaxComponent dim="
       << output_dim << std::endl;
  
    // Defining the non-linearities
    //  declare a no-op component so that we can use a sum descriptor's output
    //  multiple times, and to make the config more readable given the equations
    os << "component name=i type=SigmoidComponent dim="
       << cell_dim << std::endl;
    os << "component name=f type=SigmoidComponent dim="
       << cell_dim << std::endl;
    os << "component name=o type=SigmoidComponent dim="
       << cell_dim << std::endl;
    os << "component name=g type=TanhComponent dim="
       << cell_dim << std::endl;
    os << "component name=h type=TanhComponent dim="
       << cell_dim << std::endl;
    os << "component name=c1 type=ElementwiseProductComponent "
       << " input-dim=" << 2 * cell_dim
       << " output-dim=" << cell_dim << std::endl;
    os << "component name=c2 type=ElementwiseProductComponent "
       << " input-dim=" << 2 * cell_dim
       << " output-dim=" << cell_dim << std::endl;
    os << "component name=m type=ElementwiseProductComponent "
       << " input-dim=" << 2 * cell_dim
       << " output-dim=" << cell_dim << std::endl;
  
    // Defining the computations
    std::ostringstream temp_string_stream;
    for (size_t i = 0; i < splice_context.size(); i++) {
      int32 offset = splice_context[i];
      temp_string_stream << "Offset(input, " << offset << ")";
      if (i + 1 < splice_context.size())
        temp_string_stream << ", ";
    }
    std::string spliced_input = temp_string_stream.str();
  
    std::string c_tminus1 = "Sum(Failover(Offset(c1_t, -1), c0), IfDefined(Offset( c2_t, -1)))";
  
  
    // c0.  note: the input is never used as the component requires
    // no input indexes; we just write itself as input to keep the
    // structures happy.
    os << "component-node name=c0 component=c0 input=c0
  ";
  
    // i_t
    os << "component-node name=i1 component=Wi-xr input=Append("
       << spliced_input << ", IfDefined(Offset(r_t, -1)))
  ";
    os << "component-node name=i2 component=Wic "
       << " input=" << c_tminus1 << std::endl;
    os << "component-node name=i_t component=i input=Sum(i1, i2)
  ";
  
    // f_t
    os << "component-node name=f1 component=Wf-xr input=Append("
       << spliced_input << ", IfDefined(Offset(r_t, -1)))
  ";
    os << "component-node name=f2 component=Wfc "
       << " input=" << c_tminus1 << std::endl;
    os << "component-node name=f_t component=f input=Sum(f1, f2)
  ";
  
    // o_t
    os << "component-node name=o1 component=Wo-xr input=Append("
       << spliced_input << ", IfDefined(Offset(r_t, -1)))
  ";
    os << "component-node name=o2 component=Woc input=Sum(c1_t, c2_t)
  ";
    os << "component-node name=o_t component=o input=Sum(o1, o2)
  ";
  
    // h_t
    os << "component-node name=h_t component=h input=Sum(c1_t, c2_t)
  ";
  
    // g_t
    os << "component-node name=g1 component=Wc-xr input=Append("
       << spliced_input << ", IfDefined(Offset(r_t, -1)))
  ";
    os << "component-node name=g_t component=g input=g1
  ";
  
    // parts of c_t
    os << "component-node name=c1_t component=c1 "
       << " input=Append(f_t, " << c_tminus1 << ")
  ";
    os << "component-node name=c2_t component=c2 input=Append(i_t, g_t)
  ";
  
    // m_t
    os << "component-node name=m_t component=m input=Append(o_t, h_t)
  ";
  
    // r_t and p_t
    os << "component-node name=rp_t component=W-m input=m_t
  ";
    // Splitting outputs of Wy- node
    os << "dim-range-node name=r_t input-node=rp_t dim-offset=0 "
       << "dim=" << projection_dim << std::endl;
  
    // y_t
    os << "component-node name=y_t component=Wy- input=rp_t
  ";
  
    // Final affine transform
    os << "component-node name=final_affine component=final_affine input=y_t
  ";
    os << "component-node name=posteriors component=logsoftmax input=final_affine
  ";
    os << "output-node name=output input=posteriors
  ";
    configs->push_back(os.str());
  }
  
  void GenerateConfigSequenceLstmWithTruncation(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    std::ostringstream os;
  
    std::vector<int32> splice_context;
    for (int32 i = -5; i < 4; i++)
      if (Rand() % 3 == 0)
        splice_context.push_back(i);
    if (splice_context.empty())
      splice_context.push_back(0);
  
    int32 input_dim = 10 + Rand() % 20,
        spliced_dim = input_dim * splice_context.size(),
        output_dim = (opts.output_dim > 0 ?
                      opts.output_dim :
                      100 + Rand() % 200),
        cell_dim = 40 + Rand() % 50,
        projection_dim = std::ceil(cell_dim / (Rand() % 10 + 1));
    int32 clipping_threshold = RandInt(6, 50),
        zeroing_threshold = RandInt(1,  5),
        zeroing_interval = RandInt(1, 5) * 10;
    BaseFloat scale = 0.8 + 0.1*RandInt(0,3);
  
    os << "input-node name=input dim=" << input_dim << std::endl;
  
    // Parameter Definitions W*(* replaced by - to have valid names)
    // Input gate control : Wi* matrices
    os << "component name=Wi-xr type=NaturalGradientAffineComponent"
       << " input-dim=" << spliced_dim + projection_dim
       << " output-dim=" << cell_dim << std::endl;
    os << "component name=Wic type=PerElementScaleComponent "
       << " dim=" << cell_dim << std::endl;
  
    // Forget gate control : Wf* matrices
    os << "component name=Wf-xr type=NaturalGradientAffineComponent"
       << " input-dim=" << spliced_dim + projection_dim
       << " output-dim=" << cell_dim << std::endl;
    os << "component name=Wfc type=PerElementScaleComponent "
       << " dim=" << cell_dim << std::endl;
  
    // Output gate control : Wo* matrices
    os << "component name=Wo-xr type=NaturalGradientAffineComponent"
       << " input-dim=" << spliced_dim + projection_dim
       << " output-dim=" << cell_dim  << std::endl;
    os << "component name=Woc type=PerElementScaleComponent "
       << " dim=" << cell_dim << std::endl;
  
    // Cell input matrices : Wc* matrices
    os << "component name=Wc-xr type=NaturalGradientAffineComponent"
       << " input-dim=" << spliced_dim + projection_dim
       << " output-dim=" << cell_dim  << std::endl;
  
  
  
    // projection matrices : Wrm and Wpm
    os << "component name=W-m type=NaturalGradientAffineComponent "
       << " input-dim=" << cell_dim
       << " output-dim=" << 2 * projection_dim << std::endl;
  
    // Output : Wyr and Wyp
    os << "component name=Wy- type=NaturalGradientAffineComponent "
       << " input-dim=" << 2 * projection_dim
       << " output-dim=" << cell_dim << std::endl;
  
    // Defining the diagonal matrices
    // Defining the final affine transform
    os << "component name=final_affine type=NaturalGradientAffineComponent "
       << "input-dim=" << cell_dim << " output-dim=" << output_dim << std::endl;
    os << "component name=logsoftmax type=LogSoftmaxComponent dim="
       << output_dim << std::endl;
  
    // Defining the non-linearities
    //  declare a no-op component so that we can use a sum descriptor's output
    //  multiple times, and to make the config more readable given the equations
    os << "component name=i type=SigmoidComponent dim="
       << cell_dim << std::endl;
    os << "component name=f type=SigmoidComponent dim="
       << cell_dim << std::endl;
    os << "component name=o type=SigmoidComponent dim="
       << cell_dim << std::endl;
    os << "component name=g type=TanhComponent dim="
       << cell_dim << std::endl;
    os << "component name=h type=TanhComponent dim="
       << cell_dim << std::endl;
    os << "component name=c1 type=ElementwiseProductComponent "
       << " input-dim=" << 2 * cell_dim
       << " output-dim=" << cell_dim << std::endl;
    os << "component name=c2 type=ElementwiseProductComponent "
       << " input-dim=" << 2 * cell_dim
       << " output-dim=" << cell_dim << std::endl;
    os << "component name=m type=ElementwiseProductComponent "
       << " input-dim=" << 2 * cell_dim
       << " output-dim=" << cell_dim << std::endl;
    os << "component name=c type=BackpropTruncationComponent dim="
       << cell_dim
       << " scale=" << scale
       << " clipping-threshold=" << clipping_threshold
       << " zeroing-threshold=" << zeroing_threshold
       << " zeroing-interval=" << zeroing_interval
       << " recurrence-interval=1" << std::endl;
    os << "component name=r type=BackpropTruncationComponent dim="
       << projection_dim
       << " scale=" << scale
       << " clipping-threshold=" << clipping_threshold
       << " zeroing-threshold=" << zeroing_threshold
       << " zeroing-interval=" << zeroing_interval
       << " recurrence-interval=1" << std::endl;
  
    // Defining the computations
    std::ostringstream temp_string_stream;
    for (size_t i = 0; i < splice_context.size(); i++) {
      int32 offset = splice_context[i];
      temp_string_stream << "Offset(input, " << offset << ")";
      if (i + 1 < splice_context.size())
        temp_string_stream << ", ";
    }
    std::string spliced_input = temp_string_stream.str();
  
    int32 offset = RandInt(-3, 3);
    if (offset == 0)
      offset = -1;
  
  
    std::string c_tminus1;
    {
      std::ostringstream os_temp;
      os_temp << "IfDefined(Offset(c_t, " << offset << "))";
      c_tminus1 = os_temp.str();
    }
    os << "component-node name=c_t component=c input=Sum(c1_t, c2_t)
  ";
  
    // i_t
    os << "component-node name=i1 component=Wi-xr input=Append("
       << spliced_input << ", IfDefined(Offset(r_t, " << offset << ")))
  ";
    os << "component-node name=i2 component=Wic "
       << " input=" << c_tminus1 << std::endl;
    os << "component-node name=i_t component=i input=Sum(i1, i2)
  ";
  
    // f_t
    os << "component-node name=f1 component=Wf-xr input=Append("
       << spliced_input << ", IfDefined(Offset(r_t, " << offset << ")))
  ";
    os << "component-node name=f2 component=Wfc "
       << " input=" << c_tminus1 << std::endl;
    os << "component-node name=f_t component=f input=Sum(f1, f2)
  ";
  
    // o_t
    os << "component-node name=o1 component=Wo-xr input=Append("
       << spliced_input << ", IfDefined(Offset(r_t, " << offset << ")))
  ";
    os << "component-node name=o2 component=Woc input=Sum(c1_t, c2_t)
  ";
    os << "component-node name=o_t component=o input=Sum(o1, o2)
  ";
  
    // h_t
    os << "component-node name=h_t component=h input=Sum(c1_t, c2_t)
  ";
  
    // g_t
    os << "component-node name=g1 component=Wc-xr input=Append("
       << spliced_input << ", IfDefined(Offset(r_t, " << offset << ")))
  ";
    os << "component-node name=g_t component=g input=g1
  ";
  
    // parts of c_t
    os << "component-node name=c1_t component=c1 "
       << " input=Append(f_t, " << c_tminus1 << ")
  ";
    os << "component-node name=c2_t component=c2 input=Append(i_t, g_t)
  ";
  
    // m_t
    os << "component-node name=m_t component=m input=Append(o_t, h_t)
  ";
  
    // r_t and p_t
    os << "component-node name=rp_t component=W-m input=m_t
  ";
    // Splitting outputs of Wy- node
    os << "dim-range-node name=r_t_pretrunc input-node=rp_t dim-offset=0 "
       << "dim=" << projection_dim << std::endl;
    os << "component-node name=r_t component=r input=r_t_pretrunc
  ";
  
    // y_t
    os << "component-node name=y_t component=Wy- input=rp_t
  ";
  
    // Final affine transform
    os << "component-node name=final_affine component=final_affine input=y_t
  ";
    os << "component-node name=posteriors component=logsoftmax input=final_affine
  ";
    os << "output-node name=output input=posteriors
  ";
    configs->push_back(os.str());
  }
  
  // This is a different LSTM config where computation is bunched according
  // to inputs this is not complete, it is left here for future comparisons
  void GenerateConfigSequenceLstmType2(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    KALDI_ERR << "Not Implemented";
    std::ostringstream os;
  
    std::vector<int32> splice_context;
    for (int32 i = -5; i < 4; i++)
      if (Rand() % 3 == 0)
        splice_context.push_back(i);
    if (splice_context.empty())
      splice_context.push_back(0);
  
    int32 input_dim = 10 + Rand() % 20,
        spliced_dim = input_dim * splice_context.size(),
        output_dim = (opts.output_dim > 0 ?
                      opts.output_dim :
                      100 + Rand() % 200),
        cell_dim = 40 + Rand() % 50,
        projection_dim = std::ceil(cell_dim / (Rand() % 10 + 2));
  
    int32 offset = RandInt(-3, 3);
    if (offset == 0)
      offset = -1;
  
    os << "input-node name=input dim=" << input_dim << std::endl;
    // Parameter Definitions W*(* replaced by - to have valid names)
    os << "component name=W-x type=NaturalGradientAffineComponent input-dim="
       << spliced_dim << " output-dim=" << 4 * cell_dim << std::endl;
    os << "component name=W-r type=NaturalGradientAffineComponent input-dim="
       << projection_dim << " output-dim=" << 4 * cell_dim << std::endl;
    os << "component name=W-m type=NaturalGradientAffineComponent input-dim="
       << cell_dim << " output-dim=" << 2 * projection_dim  << std::endl;
    os << "component name=Wyr type=NaturalGradientAffineComponent input-dim="
       << projection_dim << " output-dim=" << cell_dim << std::endl;
    os << "component name=Wyp type=NaturalGradientAffineComponent input-dim="
       << projection_dim << " output-dim=" << cell_dim << std::endl;
    // Defining the diagonal matrices
    os << "component name=Wic type=PerElementScaleComponent "
       << " dim=" << cell_dim << std::endl;
    os << "component name=Wfc type=PerElementScaleComponent "
       << " dim=" << cell_dim << std::endl;
    os << "component name=Woc type=PerElementScaleComponent "
       << " dim=" << cell_dim << std::endl;
    // Defining the final affine transform
    os << "component name=final_affine type=NaturalGradientAffineComponent "
       << "input-dim=" << cell_dim << " output-dim=" << output_dim << std::endl;
    os << "component name=logsoftmax type=LogSoftmaxComponent dim="
       << output_dim << std::endl;
  
    // Defining the non-linearities
    //  declare a no-op component so that we can use a sum descriptor's output
    //  multiple times, and to make the config more readable given the equations
    os << "component name=c_t type=NoOpComponent dim="
       << cell_dim << std::endl;
    os << "component name=i_t type=SigmoidComponent dim="
       << cell_dim << std::endl;
    os << "component name=f_t type=SigmoidComponent dim="
       << cell_dim << std::endl;
    os << "component name=o_t type=SigmoidComponent dim="
       << cell_dim << std::endl;
    os << "component name=g type=TanhComponent dim="
       << cell_dim << std::endl;
    os << "component name=h type=TanhComponent dim="
       << cell_dim << std::endl;
    os << "component name=f_t-c_tminus1 type=ElementwiseProductComponent "
       << " input-dim=" << 2 * cell_dim
       << " output-dim=" << cell_dim << std::endl;
    os << "component name=i_t-g type=ElementwiseProductComponent "
       << " input-dim=" << 2 * cell_dim
       << " output-dim=" << cell_dim << std::endl;
    os << "component name=m_t type=ElementwiseProductComponent "
       << " input-dim=" << 2 * cell_dim
       << " output-dim=" << cell_dim << std::endl;
  
  
    // Defining the computations
    os << "component-node name=W-x component=W-x input=Append(";
    for (size_t i = 0; i < splice_context.size(); i++) {
      int32 offset = splice_context[i];
      os << "Offset(input, " << offset << ")";
      if (i + 1 < splice_context.size())
        os << ", ";
    }
    os << ")
  ";
  
    os << "component-node name=W-r component=W-r input=IfDefined(Offset(r_t"
       << offset << "))
  ";
    os << "component-node name=W-m component=W-m input=m_t 
  ";
    os << "component-node name=Wic component=Wic input=IfDefined(Offset(c_t"
       << offset << "))
  ";
    os << "component-node name=Wfc component=Wfc input=IfDefined(Offset(c_t"
       << offset << "))
  ";
    os << "component-node name=Woc component=Woc input=c_t
  ";
  
    // Splitting the outputs of W*m node
    os << "dim-range-node name=r_t input-node=W-m dim-offset=0 "
       << "dim=" << projection_dim << std::endl;
    os << "dim-range-node name=p_t input-node=W-m dim-offset=" << projection_dim
       << " dim=" << projection_dim << std::endl;
  
    // Splitting outputs of W*x node
    os << "dim-range-node name=W_ix-x_t input-node=W-x dim-offset=0 "
       << "dim=" << cell_dim << std::endl;
    os << "dim-range-node name=W_fx-x_t input-node=W-x "
       << "dim-offset=" << cell_dim << " dim="<<cell_dim << std::endl;
    os << "dim-range-node name=W_cx-x_t input-node=W-x "
       << "dim-offset=" << 2 * cell_dim << " dim="<<cell_dim << std::endl;
    os << "dim-range-node name=W_ox-x_t input-node=W-x "
       << "dim-offset=" << 3 * cell_dim << " dim="<<cell_dim << std::endl;
  
    // Splitting outputs of W*r node
    os << "dim-range-node name=W_ir-r_tminus1 input-node=W-r dim-offset=0 "
       << "dim=" << cell_dim << std::endl;
    os << "dim-range-node name=W_fr-r_tminus1 input-node=W-r "
       << "dim-offset=" << cell_dim << " dim="<<cell_dim << std::endl;
    os << "dim-range-node name=W_cr-r_tminus1 input-node=W-r "
       << "dim-offset=" << 2 * cell_dim << " dim="<<cell_dim << std::endl;
    os << "dim-range-node name=W_or-r_tminus1 input-node=W-r "
       << "dim-offset=" << 3 * cell_dim << " dim="<<cell_dim << std::endl;
  
    // Non-linear operations
    os << "component-node name=c_t component=c_t input=Sum(f_t-c_tminus1, i_t-g)
  ";
    os << "component-node name=h component=h input=c_t
  ";
    os << "component-node name=i_t component=i_t input=Sum(W_ix-x_t, Sum(W_ir-r_tminus1, Wic))
  ";
    os << "component-node name=f_t component=f_t input=Sum(W_fx-x_t, Sum(W_fr-r_tminus1, Wfc))
  ";
    os << "component-node name=o_t component=o_t input=Sum(W_ox-x_t, Sum(W_or-r_tminus1, Woc))
  ";
    os << "component-node name=f_t-c_tminus1 component=f_t-c_tminus1 input=Append(f_t, Offset(c_t"
       << offset << "))
  ";
    os << "component-node name=i_t-g component=i_t-g input=Append(i_t, g)
  ";
    os << "component-node name=m_t component=m_t input=Append(o_t, h)
  ";
  
    os << "component-node name=g component=g input=Sum(W_cx-x_t, W_cr-r_tminus1)
  ";
  
    // Final affine transform
    os << "component-node name=Wyr component=Wyr input=r_t
  ";
    os << "component-node name=Wyp component=Wyp input=p_t
  ";
  
    os << "component-node name=final_affine component=final_affine input=Sum(Wyr, Wyp)
  ";
  
    os << "component-node name=posteriors component=logsoftmax input=final_affine
  ";
    os << "output-node name=output input=posteriors
  ";
  
    configs->push_back(os.str());
  }
  
  void GenerateConfigSequenceCnn(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    std::ostringstream os;
  
  
    int32 input_x_dim = 10 + Rand() % 20,
          input_y_dim = 10 + Rand() % 20,
          input_z_dim = 3 + Rand() % 10,
          filt_x_dim = 1 + Rand() % input_x_dim,
          filt_y_dim = 1 + Rand() % input_y_dim,
          num_filters = 10 + Rand() % 20,
          filt_x_step = (1 + Rand() % filt_x_dim),
          filt_y_step = (1 + Rand() % filt_y_dim);
    int32 remainder = (input_x_dim - filt_x_dim) % filt_x_step;
    // adjusting input_x_dim to ensure divisibility
    input_x_dim = input_x_dim - remainder;
    remainder = (input_y_dim - filt_y_dim) % filt_y_step;
    // adjusting input_x_dim to ensure divisibility
    input_y_dim = input_y_dim - remainder;
  
    int32 input_vectorization = Rand() % 2;
    std::string vectorization;
    if (input_vectorization == 0) {
      vectorization = "yzx";
    } else  {
      vectorization = "zyx";
    }
  
    os << "component name=conv type=ConvolutionComponent "
       << " input-x-dim=" << input_x_dim
       << " input-y-dim=" << input_y_dim
       << " input-z-dim=" << input_z_dim
       << " filt-x-dim=" << filt_x_dim
       << " filt-y-dim=" << filt_y_dim
       << " filt-x-step=" << filt_x_step
       << " filt-y-step=" << filt_y_step
       << " num-filters=" << num_filters
       << " input-vectorization-order=" << vectorization
       << std::endl;
  
    int32 conv_output_x_dim = (1 + (input_x_dim - filt_x_dim) / filt_x_step);
    int32 conv_output_y_dim = (1 + (input_y_dim - filt_y_dim) / filt_y_step);
    int32 conv_output_z_dim = num_filters;
    int32 pool_x_size = 1 + Rand() % conv_output_x_dim;
    int32 pool_y_size = 1 + Rand() % conv_output_y_dim;
    int32 pool_z_size = 1 + Rand() % conv_output_z_dim;
    int32 pool_x_step = 1;
    int32 pool_y_step = 1;
    int32 pool_z_step = 1;
    do {
      pool_x_step = (1 + Rand() % pool_x_size);
    } while((conv_output_x_dim - pool_x_size) % pool_x_step);
    do {
      pool_y_step = (1 + Rand() % pool_y_size);
    } while((conv_output_y_dim - pool_y_size) % pool_y_step);
    do {
      pool_z_step = (1 + Rand() % pool_z_size);
    } while((conv_output_z_dim - pool_z_size) % pool_z_step);
  
    os << "component name=maxpooling type=MaxpoolingComponent "
       << " input-x-dim=" << conv_output_x_dim
       << " input-y-dim=" << conv_output_y_dim
       << " input-z-dim=" << conv_output_z_dim
       << " pool-x-size=" << pool_x_size
       << " pool-y-size=" << pool_y_size
       << " pool-z-size=" << pool_z_size
       << " pool-x-step=" << pool_x_step
       << " pool-y-step=" << pool_y_step
       << " pool-z-step=" << pool_z_step
       << std::endl;
  
    os << "input-node name=input dim=" << (input_x_dim * input_y_dim * input_z_dim) << std::endl;
    os << "component-node name=conv_node component=conv input=input
  ";
    os << "component-node name=maxpooling_node component=maxpooling input=conv_node
  ";
    os << "output-node name=output input=conv_node
  ";
    configs->push_back(os.str());
  }
  
  
  
  void GenerateConfigSequenceCnnNew(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    std::ostringstream ss;
  
  
    int32 cur_height = RandInt(5, 15),
        cur_num_filt = RandInt(1, 3),
        num_layers = RandInt(0, 3);
    // note: generating zero layers is a bit odd but it exercises some code that
    // we otherwise wouldn't exercise.
  
  
    std::string cur_layer_descriptor = "input";
  
    { // input layer.
      ss << "input-node name=input dim=" << (cur_height * cur_num_filt)
         << std::endl;
    }
  
  
    for (int32 l = 0; l < num_layers; l++) {
      int32 next_num_filt = RandInt(1, 10);
  
      bool height_padding = (cur_height < 5 || RandInt(0, 1) == 0);
      int32 height_subsampling_factor = RandInt(1, 2);
      if (cur_height < 4) {
        // output height of 1 causes a problem with unused height-offsets,
        // so don't subsample in that case.
        height_subsampling_factor = 1;
      }
  
      int32 next_height = cur_height;
      if (!height_padding) {
        next_height -= 2;  // the kernel will have height 3.
      }
      next_height = (next_height + height_subsampling_factor - 1) /
          height_subsampling_factor;
  
      if (next_height == cur_height && RandInt(0, 1) == 0) {
        // ensure that with sufficient frequency, we have the
        // same height and num-filt out; this enables ResNet-style
        // addition.
        next_num_filt = cur_num_filt;
      }
  
      std::string time_offsets, required_time_offsets;
      if (RandInt(0, 3) == 0) {
        time_offsets = "0";
        required_time_offsets = (RandInt(0, 1) == 0 ? "" : "0");
      } else if (RandInt(0, 1) == 0) {
        time_offsets = "-1,0,1";
        required_time_offsets = (RandInt(0, 1) == 0 ? "" : "-1");
      } else {
        time_offsets = "-2,0,2";
        required_time_offsets = (RandInt(0, 1) == 0 ? "" : "0");
      }
  
      ss << "component type=TimeHeightConvolutionComponent name=layer" << l << "-conv "
         << "num-filters-in=" << cur_num_filt
         << " num-filters-out=" << next_num_filt
         << " height-in=" << cur_height
         << " height-out=" << next_height
         << " height-offsets=" << (height_padding ? "-1,0,1" : "0,1,2")
         << " time-offsets=" << time_offsets;
  
      if (RandInt(0, 1) == 0) {
        // this limits the 'temp memory' usage to 100
        // bytes, which will test another code path where
        // it breaks up the temporary matrix into pieces
        ss << " max-memory-mb=1.0e-04";
      }
  
      if (height_subsampling_factor != 1 || RandInt(0, 1) == 0)
        ss << " height-subsample-out=" << height_subsampling_factor;
      if (required_time_offsets == "" && RandInt(0, 1) == 0) {
        required_time_offsets = time_offsets;
        // it should default to this, but we're exercising more of the config
        // parsing code this way.
      }
      if (required_time_offsets != "")
        ss << " required-time-offsets=" << required_time_offsets;
      if (RandInt(0, 1) == 0)
        ss << " param-stddev=0.1 bias-stddev=1";
      if (RandInt(0, 1) == 0)
        ss << " use-natural-gradient=false";
      if (RandInt(0, 1) == 0)
        ss << " rank-in=4";
      if (RandInt(0, 1) == 0)
        ss << " rank-out=4";
      if (RandInt(0, 1) == 0)
        ss << " alpha-in=2.0";
      if (RandInt(0, 1) == 0)
        ss << " alpha-out=2.0";
      ss << std::endl;
  
      ss << "component-node name=layer" << l << "-conv component=layer"
         << l << "-conv input=" << cur_layer_descriptor << std::endl;
  
      bool use_relu = false;
      if (use_relu) {
        ss << "component type=RectifiedLinearComponent name=layer" << l
           << "-relu dim=" << (next_height * next_num_filt) << std::endl;
        ss << "component-node name=layer" << l << "-relu component=layer"
           << l << "-relu input=layer" << l << "-conv" << std::endl;
      }
  
      std::ostringstream desc_ss;
      if (next_height == cur_height && next_num_filt == cur_num_filt
          && RandInt(0, 1) == 0) {
        desc_ss << "Sum(" << cur_layer_descriptor << ", layer" << l
                << (use_relu ? "-relu)" : "-conv)");
      } else {
        desc_ss << "layer" << l << (use_relu ? "-relu" : "-conv");
      }
  
      if (RandInt(0, 3) == 0) {
        std::ostringstream round_desc_ss;
        int32 modulus = RandInt(2, 3);
        round_desc_ss << "Round(" << desc_ss.str() << ", " << modulus << ")";
        cur_layer_descriptor = round_desc_ss.str();
      } else {
        cur_layer_descriptor = desc_ss.str();
      }
      cur_height = next_height;
      cur_num_filt = next_num_filt;
    }
  
    ss << "output-node name=output input=" << cur_layer_descriptor << std::endl;
  
  
    configs->push_back(ss.str());
  }
  
  
  
  void GenerateConfigSequenceRestrictedAttention(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    std::ostringstream ss;
  
  
    int32 input_dim = RandInt(100, 150),
        num_heads = RandInt(1, 2),
        key_dim = RandInt(20, 40),
        value_dim = RandInt(20, 40),
        time_stride = RandInt(1, 3),
        num_left_inputs = RandInt(1, 4),
        num_right_inputs = RandInt(0, 2),
        num_left_inputs_required = RandInt(0, num_left_inputs),
        num_right_inputs_required = RandInt(0, num_right_inputs);
    bool output_context = (RandInt(0, 1) == 0);
    int32 context_dim = (num_left_inputs + 1 + num_right_inputs),
        query_dim = key_dim + context_dim;
    int32 attention_input_dim = num_heads * (key_dim + value_dim + query_dim);
  
    std::string cur_layer_descriptor = "input";
  
    { // input layer.
      ss << "input-node name=input dim=" << input_dim
         << std::endl;
    }
  
    { // affine component
      ss << "component name=affine type=NaturalGradientAffineComponent input-dim="
         << input_dim << " output-dim=" << attention_input_dim << std::endl;
      ss << "component-node name=affine component=affine input=input"
         << std::endl;
    }
  
    { // attention component
      ss << "component-node name=attention component=attention input=affine"
         << std::endl;
      ss << "component name=attention type=RestrictedAttentionComponent"
         << " num-heads=" << num_heads << " key-dim=" << key_dim
         << " value-dim=" << value_dim << " time-stride=" << time_stride
         << " num-left-inputs=" << num_left_inputs << " num-right-inputs="
         << num_right_inputs << " num-left-inputs-required="
         << num_left_inputs_required << " num-right-inputs-required="
         << num_right_inputs_required
         << " output-context=" << (output_context ? "true" : "false")
         << (RandInt(0, 1) == 0 ? " key-scale=1.0" : "")
         << std::endl;
    }
  
    { // output
      ss << "output-node name=output input=attention" << std::endl;
    }
    configs->push_back(ss.str());
  }
  
  
  // generates a config sequence involving DistributeComponent.
  void GenerateConfigSequenceDistribute(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
    int32 output_dim = (opts.output_dim > 0 ? opts.output_dim : 100);
    int32 x_expand = RandInt(1, 5), after_expand_dim = RandInt(10, 20),
        input_dim = x_expand * after_expand_dim;
    std::ostringstream os;
    os << "input-node name=input dim=" << input_dim << std::endl;
    os << "component name=distribute type=DistributeComponent input-dim="
       << input_dim << " output-dim=" << after_expand_dim << std::endl;
    os << "component-node name=distribute component=distribute input=input
  ";
    os << "component name=affine type=AffineComponent input-dim="
       << after_expand_dim << " output-dim=" << output_dim << std::endl;
    os << "component-node name=affine component=affine input=distribute
  ";
    os << "output-node name=output input=Sum(";
    for (int32 i = 0; i < x_expand; i++) {
      if (i > 0) os << ", ";
      os << "ReplaceIndex(affine, x, " << i << ")";
    }
    os << ")
  ";
    configs->push_back(os.str());
  }
  
  /// Generate a config string with a composite component composed only
  /// of block affine, repeated affine, and natural gradient repeated affine
  /// components.
  void GenerateConfigSequenceCompositeBlock(const NnetGenerationOptions &opts,
                                            std::vector<std::string> *configs) {
    int32 num_components = RandInt(1,5);
    int32 input_dim = 10 * RandInt(1,10);
    if (opts.output_dim > 0) {
      KALDI_WARN  << "This function doesn't take a requested output_dim due to "
        "implementation complications.";
    }
    int32 max_rows_process = 512 + 512 * RandInt(1,3);
    std::ostringstream os;
    os << "component name=composite1 type=CompositeComponent max-rows-process="
       << max_rows_process << " num-components=" << num_components;
  
    int32 types_length = 3;
    std::string types[] = {"BlockAffineComponent",
                           "RepeatedAffineComponent",
                           "NaturalGradientRepeatedAffineComponent"};
    int32 last_output_dim = input_dim;
    // components within a composite component are indexed from 1.
    for(int32 i = 1; i <= num_components; i++) {
      os << " component" << i << "=";
      int32 rand_index = RandInt(0, types_length - 1);
      std::string rand_type = types[rand_index];
      os << "'type=" << rand_type << " input-dim=" << last_output_dim;
      int32 current_output_dim = 10 * RandInt(1,10);
      // must be a divisor or current_output_dim and last_output_dim
      int32 num_repeats = 10;
      os << " output-dim=" << current_output_dim;
      std::string repeats_string = (rand_type == "BlockAffineComponent") ? "num-blocks": "num-repeats";
      os << " " << repeats_string << "=" << num_repeats << "'";
      last_output_dim = current_output_dim;
    }
    os << std::endl << std::endl;
    os << "input-node name=input dim=" << input_dim << std::endl;
    os << "component-node name=composite1 component=composite1 input=input
  ";
    os << "output-node name=output input=composite1
  ";
    configs->push_back(os.str());
  }
  
  void GenerateConfigSequence(
      const NnetGenerationOptions &opts,
      std::vector<std::string> *configs) {
  start:
    int32 network_type = RandInt(0, 14);
    switch(network_type) {
      case 0:
        GenerateConfigSequenceSimplest(opts, configs);
        break;
      case 1:
        if (!opts.allow_context)
          goto start;
        GenerateConfigSequenceSimpleContext(opts, configs);
        break;
      case 2:
        if (!opts.allow_context || !opts.allow_nonlinearity)
          goto start;
        GenerateConfigSequenceSimple(opts, configs);
        break;
      case 3:
        if (!opts.allow_recursion || !opts.allow_context ||
            !opts.allow_nonlinearity)
          goto start;
        GenerateConfigSequenceRnn(opts, configs);
        break;
      case 4:
        if (!opts.allow_recursion || !opts.allow_context ||
            !opts.allow_nonlinearity)
          goto start;
        GenerateConfigSequenceRnnClockwork(opts, configs);
        break;
      case 5:
        if (!opts.allow_recursion || !opts.allow_context ||
            !opts.allow_nonlinearity)
          goto start;
        GenerateConfigSequenceLstm(opts, configs);
        break;
      case 6:
        if (!opts.allow_recursion || !opts.allow_context ||
            !opts.allow_nonlinearity)
          goto start;
        GenerateConfigSequenceLstm(opts, configs);
        break;
      case 7:
        if (!opts.allow_nonlinearity)
          goto start;
        GenerateConfigSequenceCnn(opts, configs);
        break;
      case 8:
        if (!opts.allow_use_of_x_dim)
          goto start;
        GenerateConfigSequenceDistribute(opts, configs);
        break;
      case 9:
        GenerateConfigSequenceCompositeBlock(opts, configs);
        break;
      case 10:
        if (!opts.allow_statistics_pooling)
          goto start;
        GenerateConfigSequenceStatistics(opts, configs);
        break;
      case 11:
        if (!opts.allow_recursion || !opts.allow_context ||
            !opts.allow_nonlinearity)
          goto start;
        GenerateConfigSequenceLstmWithTruncation(opts, configs);
        break;
        // We're allocating more case statements to the most recently
        // added type of model, to give more thorough testing where
        // it's needed most.
      case 12:
        if (!opts.allow_nonlinearity || !opts.allow_context)
          goto start;
        GenerateConfigSequenceCnnNew(opts, configs);
        break;
      case 13: case 14:
        if (!opts.allow_nonlinearity || !opts.allow_context)
          goto start;
        GenerateConfigSequenceRestrictedAttention(opts, configs);
        break;
      default:
        KALDI_ERR << "Error generating config sequence.";
    }
    KALDI_ASSERT(!configs->empty());
  }
  
  void ComputeExampleComputationRequestSimple(
      const Nnet &nnet,
      ComputationRequest *request,
      std::vector<Matrix<BaseFloat> > *inputs) {
    KALDI_ASSERT(IsSimpleNnet(nnet));
  
    int32 left_context, right_context;
    ComputeSimpleNnetContext(nnet, &left_context, &right_context);
  
    int32 num_output_frames = 1 + Rand() % 10,
        output_start_frame = Rand() % 10,
        num_examples = 1 + Rand() % 4,
        output_end_frame = output_start_frame + num_output_frames,
        input_start_frame = output_start_frame - left_context - (Rand() % 3),
        input_end_frame = output_end_frame + right_context + (Rand() % 3),
        n_offset = Rand() % 2;
    bool need_deriv = (Rand() % 2 == 0);
    // make sure there are at least 3 frames of input available.  this makes a
    // difference for our tests of statistics-pooling and statistics-extraction
    // component.
    if (input_end_frame < input_start_frame + 3)
      input_end_frame = input_start_frame + 3;
  
    request->inputs.clear();
    request->outputs.clear();
    inputs->clear();
  
    std::vector<Index> input_indexes, ivector_indexes, output_indexes;
    for (int32 n = n_offset; n < n_offset + num_examples; n++) {
      for (int32 t = input_start_frame; t < input_end_frame; t++)
        input_indexes.push_back(Index(n, t, 0));
      for (int32 t = output_start_frame; t < output_end_frame; t++)
        output_indexes.push_back(Index(n, t, 0));
      ivector_indexes.push_back(Index(n, 0, 0));
    }
    request->outputs.push_back(IoSpecification("output", output_indexes));
    if (need_deriv || (Rand() % 3 == 0))
      request->outputs.back().has_deriv = true;
    request->inputs.push_back(IoSpecification("input", input_indexes));
    if (need_deriv && (Rand() % 2 == 0))
      request->inputs.back().has_deriv = true;
    int32 input_dim = nnet.InputDim("input");
    KALDI_ASSERT(input_dim > 0);
    inputs->push_back(
        Matrix<BaseFloat>((input_end_frame - input_start_frame) * num_examples,
                          input_dim));
    inputs->back().SetRandn();
    int32 ivector_dim = nnet.InputDim("ivector");  // may not exist.
    if (ivector_dim != -1) {
      request->inputs.push_back(IoSpecification("ivector", ivector_indexes));
      inputs->push_back(Matrix<BaseFloat>(num_examples, ivector_dim));
      inputs->back().SetRandn();
      if (need_deriv && (Rand() % 2 == 0))
        request->inputs.back().has_deriv = true;
    }
    if (Rand() % 2 == 0)
      request->need_model_derivative = need_deriv;
    if (Rand() % 2 == 0)
      request->store_component_stats = true;
  }
  
  
  static void GenerateRandomComponentConfig(std::string *component_type,
                                            std::string *config) {
  
    int32 n = RandInt(0, 37);
    BaseFloat learning_rate = 0.001 * RandInt(1, 100);
  
    std::ostringstream os;
    switch(n) {
      case 0: {
        *component_type = "PnormComponent";
        int32 output_dim = RandInt(1, 50), group_size = RandInt(1, 15),
            input_dim = output_dim * group_size;
        os << "input-dim=" << input_dim << " output-dim=" << output_dim;
        break;
      }
      case 1: {
        BaseFloat target_rms = (RandInt(1, 200) / 100.0);
        std::string add_log_stddev = (Rand() % 2 == 0 ? "True" : "False");
        *component_type = "NormalizeComponent";
  
        int32 block_dim = RandInt(2, 50), num_blocks = RandInt(1, 3),
            dim = block_dim * num_blocks;
        // avoid dim=1 because the derivatives would be zero, which
        // makes them hard to test.
        os << "dim=" << dim << " block-dim=" << block_dim
           << " target-rms=" << target_rms
           << " add-log-stddev=" << add_log_stddev;
        break;
      }
      case 2: {
        *component_type = "SigmoidComponent";
        os << "dim=" << RandInt(1, 50);
        break;
      }
      case 3: {
        *component_type = "TanhComponent";
        os << "dim=" << RandInt(1, 50);
        break;
      }
      case 4: {
        *component_type = "RectifiedLinearComponent";
        os << "dim=" << RandInt(1, 50);
        break;
      }
      case 5: {
        *component_type = "SoftmaxComponent";
        os << "dim=" << RandInt(1, 50);
        break;
      }
      case 6: {
        *component_type = "LogSoftmaxComponent";
        os << "dim=" << RandInt(1, 50);
        break;
      }
      case 7: {
        *component_type = "NoOpComponent";
        os << "dim=" << RandInt(1, 50);
        break;
      }
      case 8: {
        *component_type = "FixedAffineComponent";
        int32 input_dim = RandInt(1, 50), output_dim = RandInt(1, 50);
        os << "input-dim=" << input_dim << " output-dim=" << output_dim;
        break;
      }
      case 9: {
        *component_type = "AffineComponent";
        int32 input_dim = RandInt(1, 50), output_dim = RandInt(1, 50);
        os << "input-dim=" << input_dim << " output-dim=" << output_dim
           << " learning-rate=" << learning_rate;
        break;
      }
      case 10: {
        *component_type = "NaturalGradientAffineComponent";
        int32 input_dim = RandInt(1, 50), output_dim = RandInt(1, 50);
        os << "input-dim=" << input_dim << " output-dim=" << output_dim
           << " learning-rate=" << learning_rate;
        break;
      }
      case 11: {
        *component_type = "SumGroupComponent";
        std::vector<int32> sizes;
        int32 num_groups = RandInt(1, 50);
        os << "sizes=";
        for (int32 i = 0; i < num_groups; i++) {
          os << RandInt(1, 5);
          if (i + 1 < num_groups)
            os << ',';
        }
        break;
      }
      case 12: {
        *component_type = "FixedScaleComponent";
        os << "dim=" << RandInt(1, 100);
        break;
      }
      case 13: {
        *component_type = "FixedBiasComponent";
        os << "dim=" << RandInt(1, 100);
        break;
      }
      case 14: {
        *component_type = "NaturalGradientPerElementScaleComponent";
        os << "dim=" << RandInt(1, 100)
           << " learning-rate=" << learning_rate;
        break;
      }
      case 15: {
        *component_type = "PerElementScaleComponent";
        os << "dim=" << RandInt(1, 100)
           << " learning-rate=" << learning_rate;
        break;
      }
      case 16: {
        *component_type = "ElementwiseProductComponent";
        int32 output_dim = RandInt(1, 100), multiple = RandInt(2, 4),
            input_dim = output_dim * multiple;
        os << "input-dim=" << input_dim << " output-dim=" << output_dim;
        break;
      }
      case 17: {
        int32 input_vectorization = Rand() % 2;
        std::string vectorization;
        if (input_vectorization == 0) {
          vectorization = "yzx";
        } else  {
          vectorization = "zyx";
        }
        *component_type = "ConvolutionComponent";
        int32 input_x_dim = 10 + Rand() % 20,
              input_y_dim = 10 + Rand() % 20,
              input_z_dim = 3 + Rand() % 10,
              filt_x_dim = 1 + Rand() % input_x_dim,
              filt_y_dim = 1 + Rand() % input_y_dim,
              num_filters = 1 + Rand() % 10,
              filt_x_step = (1 + Rand() % filt_x_dim),
              filt_y_step = (1 + Rand() % filt_y_dim);
        int32 remainder = (input_x_dim - filt_x_dim) % filt_x_step;
        // adjusting input_x_dim to ensure divisibility
        input_x_dim = input_x_dim - remainder;
        remainder = (input_y_dim - filt_y_dim) % filt_y_step;
        // adjusting input_x_dim to ensure divisibility
        input_y_dim = input_y_dim - remainder;
  
        os << "input-x-dim=" << input_x_dim
           << " input-y-dim=" << input_y_dim
           << " input-z-dim=" << input_z_dim
           << " filt-x-dim=" << filt_x_dim
           << " filt-y-dim=" << filt_y_dim
           << " filt-x-step=" << filt_x_step
           << " filt-y-step=" << filt_y_step
           << " num-filters=" << num_filters
           << " input-vectorization-order=" << vectorization
           << " learning-rate=" << learning_rate;
        break;
        // TODO : add test for file based initialization. But confirm how to write
        // a file which is not going to be overwritten by other components
      }
      case 18: {
        *component_type = "PermuteComponent";
        int32 input_dim = 10 + Rand() % 100;
        std::vector<int32> column_map(input_dim);
        for (int32 i = 0; i < input_dim; i++)
          column_map[i] = i;
        std::random_shuffle(column_map.begin(), column_map.end());
        std::ostringstream buffer;
        for (int32 i = 0; i < input_dim-1; i++)
          buffer << column_map[i] << ",";
        buffer << column_map.back();
        os << "column-map=" << buffer.str();
        break;
      }
      case 19: {
        *component_type = "PerElementOffsetComponent";
        std::string param_config = RandInt(0, 1)?
                                   " param-mean=0.0 param-stddev=0.0":
                                   " param-mean=1.0 param-stddev=1.0";
        int32 block_dim = RandInt(10, 20), dim = block_dim * RandInt(1, 2);
        os << "dim=" << dim << " block-dim=" << block_dim
           << " use-natural-gradient=" << (RandInt(0, 1) == 0 ? "true" : "false")
           << " learning-rate=" << learning_rate << param_config;
        break;
      }
      case 20: case 21: {
        *component_type = "CompositeComponent";
        int32 cur_dim = RandInt(20, 30), num_components = RandInt(1, 3),
            max_rows_process = RandInt(1, 30);
        os << "num-components=" << num_components
           << " max-rows-process=" << max_rows_process;
        std::vector<std::string> sub_configs;
        for (int32 i = 1; i <= num_components; i++) {
          if (RandInt(1, 3) == 1) {
            os << " component" << i << "='type=RectifiedLinearComponent dim="
               << cur_dim << "'";
          } else if (RandInt(1, 2) == 1) {
            os << " component" << i << "='type=TanhComponent dim="
               << cur_dim << "'";
          } else {
            int32 next_dim = RandInt(20, 30);
            os << " component" << i << "='type=AffineComponent input-dim="
               << cur_dim << " output-dim=" << next_dim << "'";
            cur_dim = next_dim;
          }
        }
        break;
      }
      case 22: {
        *component_type = "SumGroupComponent";
        int32 num_groups = RandInt(1, 50),
          input_dim = num_groups * RandInt(1, 15);
        os << "input-dim=" << input_dim << " output-dim=" << num_groups;
        break;
      }
      case 23: {
        *component_type = "RepeatedAffineComponent";
        int32 num_repeats = RandInt(1, 50),
            input_dim = num_repeats * RandInt(1, 15),
            output_dim = num_repeats * RandInt(1, 15);
        os << "input-dim=" << input_dim << " output-dim=" << output_dim
           << " num-repeats=" << num_repeats;
        break;
      }
      case 24: {
        *component_type = "BlockAffineComponent";
        int32 num_blocks = RandInt(1, 50),
            input_dim = num_blocks * RandInt(1, 15),
            output_dim = num_blocks * RandInt(1, 15);
        os << "input-dim=" << input_dim << " output-dim=" << output_dim
           << " num-blocks=" << num_blocks;
        break;
      }
      case 25: {
        *component_type = "NaturalGradientRepeatedAffineComponent";
        int32 num_repeats = RandInt(1, 50),
            input_dim = num_repeats * RandInt(1, 15),
            output_dim = num_repeats * RandInt(1, 15);
        os << "input-dim=" << input_dim << " output-dim=" << output_dim
           << " num-repeats=" << num_repeats;
        break;
      }
      case 26: {
        *component_type = "MaxpoolingComponent";
        int32 input_x_dim = 5 + Rand() % 10,
              input_y_dim = 5 + Rand() % 10,
              input_z_dim = 5 + Rand() % 10;
        int32 pool_x_size = 1 + Rand() % input_x_dim,
              pool_y_size = 1 + Rand() % input_y_dim,
              pool_z_size = 1 + Rand() % input_z_dim;
        int32 pool_x_step = (1 + Rand() % pool_x_size),
              pool_y_step = (1 + Rand() % pool_y_size),
              pool_z_step = (1 + Rand() % pool_z_size);
        // adjusting input dim to ensure divisibility
        int32 remainder = (input_x_dim - pool_x_size) % pool_x_step;
        input_x_dim = input_x_dim - remainder;
        remainder = (input_y_dim - pool_y_size) % pool_y_step;
        input_y_dim = input_y_dim - remainder;
        remainder = (input_z_dim - pool_z_size) % pool_z_step;
        input_z_dim = input_z_dim - remainder;
        os << " input-x-dim=" << input_x_dim
           << " input-y-dim=" << input_y_dim
           << " input-z-dim=" << input_z_dim
           << " pool-x-size=" << pool_x_size
           << " pool-y-size=" << pool_y_size
           << " pool-z-size=" << pool_z_size
           << " pool-x-step=" << pool_x_step
           << " pool-y-step=" << pool_y_step
           << " pool-z-step=" << pool_z_step;
        break;
      }
      case 27: {
        *component_type = "ConstantFunctionComponent";
        int32 input_dim = RandInt(1, 50), output_dim = RandInt(1, 50);
        bool is_updatable = (RandInt(0, 1) == 0),
            use_natural_gradient =  (RandInt(0, 1) == 0);
        os << "input-dim=" << input_dim << " output-dim=" << output_dim
           << " learning-rate=" << learning_rate
           << " is-updatable=" << std::boolalpha << is_updatable
           << " use-natural-gradient=" << std::boolalpha << use_natural_gradient;
        break;
      }
      case 28: {
        *component_type = "ClipGradientComponent";
        os << "dim=" << RandInt(1, 50);
        os << " clipping-threshold=" << RandInt(1, 50)
           << " norm-based-clipping=" << (RandInt(0, 1) == 0 ? "false" : "true");
        if (RandInt(0, 1) == 1)
          os << " self-repair-scale="
             << (RandInt(0, 1) == 0 ? 0 : RandInt(1, 50));
        if (RandInt(0, 1) == 1)
          os << " self-repair-clipped-proportion-threshold=" << RandUniform();
        if (RandInt(0, 1) == 1)
          os << " self-repair-target=" << RandUniform();
        break;
      }
      case 29: {
        *component_type = "DropoutComponent";
        bool test_mode = (RandInt(0, 1) == 0);
        os << "dim=" << RandInt(1, 200)
           << " dropout-proportion=" << RandUniform() << " test-mode="
           << (test_mode ? "true" : "false");
        break;
      }
      case 30: {
        *component_type = "LstmNonlinearityComponent";
        // set self-repair scale to zero so the derivative tests will pass.
        os << "cell-dim=" << RandInt(1, 200)
           << " self-repair-scale=0.0";
        break;
      }
      // I think we'll get in the habit of allocating a larger number of case
      // labels to the most recently added component, so it gets tested more
      case 31: {
        *component_type = "BatchNormComponent";
        int32 block_dim = RandInt(1, 20), dim = block_dim * RandInt(1, 2);
        bool test_mode = (RandInt(0, 1) == 0);
        os << " dim=" << dim
           << " block-dim=" << block_dim << " target-rms="
           << RandInt(1, 4) << " test-mode="
           << (test_mode ? "true" : "false")
           << " epsilon=" << (RandInt(0, 1) == 0 ? "0.1" : "1.0");
        break;
      }
      case 32: {
        *component_type = "SumBlockComponent";
        BaseFloat scale = 0.5 * RandInt(1, 3);
        BaseFloat output_dim = RandInt(1, 10),
            input_dim = output_dim * RandInt(1, 3);
        os << "input-dim=" << input_dim
           << " output-dim=" << output_dim
           << " scale=" << scale;
        break;
      }
      case 33: {
        *component_type = "ScaleAndOffsetComponent";
        int32 block_dim = RandInt(10, 20),
            num_blocks = RandInt(1, 3),
            dim = block_dim * num_blocks;
        os << "dim=" << dim << " block-dim=" << block_dim
           << " use-natural-gradient="
           << (RandInt(0,1) == 0 ? "true" : "false");
        break;
      }
      case 34: {
        *component_type = "LinearComponent";
        int32 input_dim = RandInt(1, 50), output_dim = RandInt(1, 50);
        os << "input-dim=" << input_dim << " output-dim=" << output_dim
           << " learning-rate=" << learning_rate;
        break;
      }
      case 35: {
        // This is not technically a SimpleComponent, but it behaves as one
        // if time-offsets=0.
        *component_type = "TdnnComponent";
        int32 input_dim = RandInt(1, 50), output_dim = RandInt(1, 50);
        os << "input-dim=" << input_dim << " output-dim=" << output_dim
           << " learning-rate=" << learning_rate << " time-offsets=0"
           << " use-natural-gradient=" << (RandInt(0,1) == 0 ? "true":"false")
           << " use-bias=" << (RandInt(0,1) == 0 ? "true":"false");
        break;
      }
      case 36: {
        *component_type = "GruNonlinearityComponent";
        int32 cell_dim = RandInt(10, 20);
        int32 recurrent_dim = (RandInt(0, 1) == 0 ?
                               RandInt(5, cell_dim - 1) : cell_dim);
        os << "cell-dim=" << cell_dim
           << " recurrent-dim=" << recurrent_dim;
        break;
      }
      case 37: {
        *component_type = "OutputGruNonlinearityComponent";
        os << "cell-dim=" << RandInt(10, 20)
           << " learning-rate=" << learning_rate;
  
        break;
      }
      default:
        KALDI_ERR << "Error generating random component";
    }
    *config = os.str();
  }
  
  /// Generates random simple component for testing.
  Component *GenerateRandomSimpleComponent() {
    std::string component_type, config;
    GenerateRandomComponentConfig(&component_type, &config);
    ConfigLine config_line;
    if (!config_line.ParseLine(config))
      KALDI_ERR << "Bad config line " << config;
  
    Component *c = Component::NewComponentOfType(component_type);
    if (c == NULL)
      KALDI_ERR << "Invalid component type " << component_type;
    c->InitFromConfig(&config_line);
    if (config_line.HasUnusedValues()) {
      KALDI_ERR << "Config line " << config_line.WholeLine()
                << " has unused values: "
                << config_line.UnusedValues();
    }
    return c;
  }
  
  bool NnetParametersAreIdentical(const Nnet &nnet1,
                                  const Nnet &nnet2,
                                  BaseFloat threshold = 1.0e-05) {
    KALDI_ASSERT(nnet1.NumComponents() == nnet2.NumComponents());
    int32 num_components = nnet1.NumComponents();
    for (int32 c = 0; c < num_components; c++) {
      const Component *c1 = nnet1.GetComponent(c),
                      *c2 = nnet2.GetComponent(c);
      KALDI_ASSERT(c1->Type() == c2->Type());
      if (c1->Properties() & kUpdatableComponent) {
        const UpdatableComponent *u1 = dynamic_cast<const UpdatableComponent*>(c1),
                                 *u2 = dynamic_cast<const UpdatableComponent*>(c2);
        KALDI_ASSERT(u1 != NULL && u2 != NULL);
        BaseFloat prod11 = u1->DotProduct(*u1), prod12 = u1->DotProduct(*u2),
                  prod21 = u2->DotProduct(*u1), prod22 = u2->DotProduct(*u2);
        BaseFloat max_prod = std::max(std::max(prod11, prod12),
                                      std::max(prod21, prod22)),
                  min_prod = std::min(std::min(prod11, prod12),
                                      std::min(prod21, prod22));
        if (max_prod - min_prod > threshold * max_prod) {
          KALDI_WARN << "Component '" << nnet1.GetComponentName(c)
                     << "' differs in nnet1 versus nnet2: prod(11,12,21,22) = "
                     << prod11 << ',' << prod12 << ',' << prod21 << ',' << prod22;
          return false;
        }
      }
    }
    return true;
  }
  
  void GenerateSimpleNnetTrainingExample(
      int32 num_supervised_frames,
      int32 left_context,
      int32 right_context,
      int32 output_dim,
      int32 input_dim,
      int32 ivector_dim,
      NnetExample *example) {
    KALDI_ASSERT(num_supervised_frames > 0 && left_context >= 0 &&
                 right_context >= 0 && output_dim > 0 && input_dim > 0
                 && example != NULL);
    example->io.clear();
  
    int32 feature_t_begin = RandInt(0, 2);
    int32 num_feat_frames = left_context + right_context + num_supervised_frames;
    Matrix<BaseFloat> input_mat(num_feat_frames, input_dim);
    input_mat.SetRandn();
    NnetIo input_feat("input", feature_t_begin, input_mat);
    if (RandInt(0, 1) == 0)
      input_feat.features.Compress();
    example->io.push_back(input_feat);
  
    if (ivector_dim > 0) {
      // Create a feature for the iVectors.  iVectors always have t=0 in the
      // current framework.
      Matrix<BaseFloat> ivector_mat(1, ivector_dim);
      ivector_mat.SetRandn();
      NnetIo ivector_feat("ivector", 0, ivector_mat);
      if (RandInt(0, 1) == 0)
        ivector_feat.features.Compress();
      example->io.push_back(ivector_feat);
    }
  
    {  // set up the output supervision.
      Posterior labels(num_supervised_frames);
      for (int32 t = 0; t < num_supervised_frames; t++) {
        int32 num_labels = RandInt(1, 3);
        BaseFloat remaining_prob_mass = 1.0;
        for (int32 i = 0; i < num_labels; i++) {
          BaseFloat this_prob = (i+1 == num_labels ? 1.0 : RandUniform()) *
              remaining_prob_mass;
          remaining_prob_mass -= this_prob;
          labels[t].push_back(std::pair<int32, BaseFloat>(RandInt(0, output_dim-1),
                                                          this_prob));
        }
      }
      int32 supervision_t_begin = feature_t_begin + left_context;
      NnetIo output_sup("output", output_dim, supervision_t_begin,
                        labels);
      example->io.push_back(output_sup);
    }
  }
  
  bool ExampleApproxEqual(const NnetExample &eg1,
                          const NnetExample &eg2,
                          BaseFloat delta) {
    if (eg1.io.size() != eg2.io.size())
      return false;
    for (size_t i = 0; i < eg1.io.size(); i++) {
      NnetIo io1 = eg1.io[i], io2 = eg2.io[i];
      if (io1.name != io2.name || io1.indexes != io2.indexes)
        return false;
      Matrix<BaseFloat> feat1, feat2;
      io1.features.GetMatrix(&feat1);
      io2.features.GetMatrix(&feat2);
      if (!ApproxEqual(feat1, feat2, delta))
        return false;
    }
    return true;
  }
  
  
  } // namespace nnet3
  } // namespace kaldi