Blame view
src/nnet3bin/nnet3-average.cc
5.71 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
// nnet3bin/nnet3-average.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet3/nnet-utils.h" namespace kaldi { void GetWeights(const std::string &weights_str, int32 num_inputs, std::vector<BaseFloat> *weights) { KALDI_ASSERT(num_inputs >= 1); if (!weights_str.empty()) { SplitStringToFloats(weights_str, ":", true, weights); if (weights->size() != num_inputs) { KALDI_ERR << "--weights option must be a colon-separated list " << "with " << num_inputs << " elements, got: " << weights_str; } } else { for (int32 i = 0; i < num_inputs; i++) weights->push_back(1.0 / num_inputs); } // normalize the weights to sum to one. float weight_sum = 0.0; for (int32 i = 0; i < num_inputs; i++) weight_sum += (*weights)[i]; for (int32 i = 0; i < num_inputs; i++) (*weights)[i] = (*weights)[i] / weight_sum; if (fabs(weight_sum - 1.0) > 0.01) { KALDI_WARN << "Normalizing weights to sum to one, sum was " << weight_sum; } } // This job is run in a spawned thread; it reads a subset of models with // specified weights. Sets *success to 1 for success and 0 for failure. (We // don't use bool because of the weird implementation of std::vector<bool>). void ReadModels(std::vector<std::pair<std::string, BaseFloat> > models_and_weights, nnet3::Nnet *output_nnet, int32 *success) { using namespace nnet3; try { int32 n = models_and_weights.size(); ReadKaldiObject(models_and_weights[0].first, output_nnet); ScaleNnet(models_and_weights[0].second, output_nnet); for (int32 i = 1; i < n; i++) { Nnet nnet; ReadKaldiObject(models_and_weights[i].first, &nnet); AddNnet(nnet, models_and_weights[i].second, output_nnet); } *success = 1; } catch (...) { *success = 0; } } } // namespace kaldi int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "This program averages the parameters over a number of 'raw' nnet3 neural nets. " " " "Usage: nnet3-average [options] <model1> <model2> ... <modelN> <model-out> " " " "e.g.: " " nnet3-average 1.1.nnet 1.2.nnet 1.3.nnet 2.nnet "; bool binary_write = true; int32 num_threads = -1; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); std::string weights_str; po.Register("weights", &weights_str, "Colon-separated list of weights, one " "for each input model. These will be normalized to sum to one."); po.Register("num-threads", &num_threads, "Number of threads to read the " "models (will be set automatically if not set."); po.Read(argc, argv); if (po.NumArgs() < 2) { po.PrintUsage(); exit(1); } std::string first_nnet_rxfilename = po.GetArg(1), nnet_wxfilename = po.GetArg(po.NumArgs()); int32 num_inputs = po.NumArgs() - 1; if (num_threads <= 0) { // Default logic for selecting the number of threads. if (num_inputs > 10) num_threads = 3; else if (num_inputs > 5) num_threads = 2; else num_threads = 1; } if (num_threads > 1 && num_threads * 2 > num_inputs) { num_threads = num_inputs / 2; } std::vector<BaseFloat> model_weights; GetWeights(weights_str, num_inputs, &model_weights); std::vector<Nnet> nnets(num_threads); std::vector<int32> return_statuses(num_threads); std::vector<std::thread*> threads(num_threads); for (int32 thread_id = 0; thread_id < num_threads; thread_id++) { std::vector<std::pair<std::string, BaseFloat> > this_models_and_weights; for (int32 j = 1 + thread_id; j < po.NumArgs(); j += num_threads) { this_models_and_weights.push_back(std::pair<std::string, BaseFloat>( po.GetArg(j), model_weights[j - 1])); } threads[thread_id] = new std::thread(ReadModels, this_models_and_weights, &(nnets[thread_id]), &(return_statuses[thread_id])); } bool success = true; for (int32 thread_id = 0; thread_id < num_threads; thread_id++) { threads[thread_id]->join(); delete threads[thread_id]; if (!return_statuses[thread_id]) success = false; if (success && thread_id > 0) AddNnet(nnets[thread_id], 1.0, &(nnets[0])); } if (!success) { KALDI_ERR << "Error detected in a model-reading thread."; } WriteKaldiObject(nnets[0], nnet_wxfilename, binary_write); KALDI_LOG << "Averaged parameters of " << num_inputs << " neural nets, and wrote to " << nnet_wxfilename; return 0; // it will throw an exception if there are any problems. } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |