Blame view
src/nnet3bin/nnet3-compute.cc
6.77 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
// nnet3bin/nnet3-compute.cc // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // 2015 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet3/nnet-am-decodable-simple.h" #include "base/timer.h" #include "nnet3/nnet-utils.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Propagate the features through raw neural network model " "and write the output. " "If --apply-exp=true, apply the Exp() function to the output " "before writing it out. " " " "Usage: nnet3-compute [options] <nnet-in> <features-rspecifier> <matrix-wspecifier> " " e.g.: nnet3-compute final.raw scp:feats.scp ark:nnet_prediction.ark " "See also: nnet3-compute-from-egs, nnet3-chain-compute-post " "Note: this program does not currently make very efficient use of the GPU. "; ParseOptions po(usage); Timer timer; NnetSimpleComputationOptions opts; opts.acoustic_scale = 1.0; // by default do no scaling. bool apply_exp = false, use_priors = false; std::string use_gpu = "yes"; std::string ivector_rspecifier, online_ivector_rspecifier, utt2spk_rspecifier; int32 online_ivector_period = 0; opts.Register(&po); po.Register("ivectors", &ivector_rspecifier, "Rspecifier for " "iVectors as vectors (i.e. not estimated online); per utterance " "by default, or per speaker if you provide the --utt2spk option."); po.Register("utt2spk", &utt2spk_rspecifier, "Rspecifier for " "utt2spk option used to get ivectors per speaker"); po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier for " "iVectors estimated online, as matrices. If you supply this," " you must set the --online-ivector-period option."); po.Register("online-ivector-period", &online_ivector_period, "Number of frames " "between iVectors in matrices supplied to the --online-ivectors " "option"); po.Register("apply-exp", &apply_exp, "If true, apply exp function to " "output"); po.Register("use-gpu", &use_gpu, "yes|no|optional|wait, only has effect if compiled with CUDA"); po.Register("use-priors", &use_priors, "If true, subtract the logs of the " "priors stored with the model (in this case, " "a .mdl file is expected as input)."); #if HAVE_CUDA==1 CuDevice::RegisterDeviceOptions(&po); #endif po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } #if HAVE_CUDA==1 CuDevice::Instantiate().SelectGpuId(use_gpu); #endif std::string nnet_rxfilename = po.GetArg(1), feature_rspecifier = po.GetArg(2), matrix_wspecifier = po.GetArg(3); Nnet raw_nnet; AmNnetSimple am_nnet; if (use_priors) { bool binary; TransitionModel trans_model; Input ki(nnet_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } else { ReadKaldiObject(nnet_rxfilename, &raw_nnet); } Nnet &nnet = (use_priors ? am_nnet.GetNnet() : raw_nnet); SetBatchnormTestMode(true, &nnet); SetDropoutTestMode(true, &nnet); CollapseModel(CollapseModelConfig(), &nnet); Vector<BaseFloat> priors; if (use_priors) priors = am_nnet.Priors(); RandomAccessBaseFloatMatrixReader online_ivector_reader( online_ivector_rspecifier); RandomAccessBaseFloatVectorReaderMapped ivector_reader( ivector_rspecifier, utt2spk_rspecifier); CachingOptimizingCompiler compiler(nnet, opts.optimize_config); BaseFloatMatrixWriter matrix_writer(matrix_wspecifier); int32 num_success = 0, num_fail = 0; int64 frame_count = 0; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); const Matrix<BaseFloat> &features (feature_reader.Value()); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } const Matrix<BaseFloat> *online_ivectors = NULL; const Vector<BaseFloat> *ivector = NULL; if (!ivector_rspecifier.empty()) { if (!ivector_reader.HasKey(utt)) { KALDI_WARN << "No iVector available for utterance " << utt; num_fail++; continue; } else { ivector = &ivector_reader.Value(utt); } } if (!online_ivector_rspecifier.empty()) { if (!online_ivector_reader.HasKey(utt)) { KALDI_WARN << "No online iVector available for utterance " << utt; num_fail++; continue; } else { online_ivectors = &online_ivector_reader.Value(utt); } } DecodableNnetSimple nnet_computer( opts, nnet, priors, features, &compiler, ivector, online_ivectors, online_ivector_period); Matrix<BaseFloat> matrix(nnet_computer.NumFrames(), nnet_computer.OutputDim()); for (int32 t = 0; t < nnet_computer.NumFrames(); t++) { SubVector<BaseFloat> row(matrix, t); nnet_computer.GetOutputForFrame(t, &row); } if (apply_exp) matrix.ApplyExp(); matrix_writer.Write(utt, matrix); frame_count += features.NumRows(); num_success++; } #if HAVE_CUDA==1 CuDevice::Instantiate().PrintProfile(); #endif double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken "<< elapsed << "s: real-time factor assuming 100 frames/sec is " << (elapsed*100.0/frame_count); KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail; if (num_success != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |