Blame view

src/nnet3bin/nnet3-copy-egs.cc 16.9 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
  // nnet3bin/nnet3-copy-egs.cc
  
  // Copyright 2012-2015  Johns Hopkins University (author:  Daniel Povey)
  //                2014  Vimal Manohar
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "hmm/transition-model.h"
  #include "nnet3/nnet-example.h"
  #include "nnet3/nnet-example-utils.h"
  
  namespace kaldi {
  namespace nnet3 {
  
  // renames outputs named "output" to new_name
  void RenameOutputs(const std::string &new_name, NnetExample *eg) {
    bool found_output = false;
    for (std::vector<NnetIo>::iterator it = eg->io.begin();
         it != eg->io.end(); ++it) {
      if (it->name == "output") {
        it->name = new_name;
        found_output = true;
      }
    }
  
    if (!found_output)
      KALDI_ERR << "No io-node with name 'output'"
                << "exists in eg.";
  }
  
  // scales the supervision for 'output' by a factor of "weight"
  void ScaleSupervisionWeight(BaseFloat weight, NnetExample *eg) {
    if (weight == 1.0) return;
  
    bool found_output = false;
    for (std::vector<NnetIo>::iterator it = eg->io.begin();
         it != eg->io.end(); ++it) {
      if (it->name == "output") {
        it->features.Scale(weight);
        found_output = true;
      }
    }
  
    if (!found_output)
      KALDI_ERR << "No supervision with name 'output'"
                << "exists in eg.";
  }
  
  // returns an integer randomly drawn with expected value "expected_count"
  // (will be either floor(expected_count) or ceil(expected_count)).
  int32 GetCount(double expected_count) {
    KALDI_ASSERT(expected_count >= 0.0);
    int32 ans = floor(expected_count);
    expected_count -= ans;
    if (WithProb(expected_count))
      ans++;
    return ans;
  }
  
  /** Returns true if the "eg" contains just a single example, meaning
      that all the "n" values in the indexes are zero, and the example
      has NnetIo members named both "input" and "output"
  
      Also computes the minimum and maximum "t" values in the "input" and
      "output" NnetIo members.
   */
  bool ContainsSingleExample(const NnetExample &eg,
                             int32 *min_input_t,
                             int32 *max_input_t,
                             int32 *min_output_t,
                             int32 *max_output_t) {
    bool done_input = false, done_output = false;
    int32 num_indexes = eg.io.size();
    for (int32 i = 0; i < num_indexes; i++) {
      const NnetIo &io = eg.io[i];
      std::vector<Index>::const_iterator iter = io.indexes.begin(),
                                          end = io.indexes.end();
      // Should not have an empty input/output type.
      KALDI_ASSERT(!io.indexes.empty());
      if (io.name == "input" || io.name == "output") {
        int32 min_t = iter->t, max_t = iter->t;
        for (; iter != end; ++iter) {
          int32 this_t = iter->t;
          min_t = std::min(min_t, this_t);
          max_t = std::max(max_t, this_t);
          if (iter->n != 0) {
            KALDI_WARN << "Example does not contain just a single example; "
                       << "too late to do frame selection or reduce context.";
            return false;
          }
        }
        if (io.name == "input") {
          done_input = true;
          *min_input_t = min_t;
          *max_input_t = max_t;
        } else {
          KALDI_ASSERT(io.name == "output");
          done_output = true;
          *min_output_t = min_t;
          *max_output_t = max_t;
        }
      } else {
        for (; iter != end; ++iter) {
          if (iter->n != 0) {
            KALDI_WARN << "Example does not contain just a single example; "
                       << "too late to do frame selection or reduce context.";
            return false;
          }
        }
      }
    }
    if (!done_input) {
      KALDI_WARN << "Example does not have any input named 'input'";
      return false;
    }
    if (!done_output) {
      KALDI_WARN << "Example does not have any output named 'output'";
      return false;
    }
    return true;
  }
  
  /**
     This function filters the indexes (and associated feature rows) in a
     NnetExample, removing any index/row in an NnetIo named "input" with t <
     min_input_t or t > max_input_t and any index/row in an NnetIo named "output" with t <
     min_output_t or t > max_output_t.
     Will crash if filtering removes all Indexes of "input" or "output".
   */
  void FilterExample(const NnetExample &eg,
                     int32 min_input_t,
                     int32 max_input_t,
                     int32 min_output_t,
                     int32 max_output_t,
                     NnetExample *eg_out) {
    eg_out->io.clear();
    eg_out->io.resize(eg.io.size());
    for (size_t i = 0; i < eg.io.size(); i++) {
      bool is_input_or_output;
      int32 min_t, max_t;
      const NnetIo &io_in = eg.io[i];
      NnetIo &io_out = eg_out->io[i];
      const std::string &name = io_in.name;
      io_out.name = name;
      if (name == "input") {
        min_t = min_input_t;
        max_t = max_input_t;
        is_input_or_output = true;
      } else if (name == "output") {
        min_t = min_output_t;
        max_t = max_output_t;
        is_input_or_output = true;
      } else {
        is_input_or_output = false;
      }
      if (!is_input_or_output) {  // Just copy everything.
        io_out.indexes = io_in.indexes;
        io_out.features = io_in.features;
      } else {
        const std::vector<Index> &indexes_in = io_in.indexes;
        std::vector<Index> &indexes_out = io_out.indexes;
        indexes_out.reserve(indexes_in.size());
        int32 num_indexes = indexes_in.size(), num_kept = 0;
        KALDI_ASSERT(io_in.features.NumRows() == num_indexes);
        std::vector<bool> keep(num_indexes, false);
        std::vector<Index>::const_iterator iter_in = indexes_in.begin(),
                                            end_in = indexes_in.end();
        std::vector<bool>::iterator iter_out = keep.begin();
        for (; iter_in != end_in; ++iter_in,++iter_out) {
          int32 t = iter_in->t;
          bool is_within_range = (t >= min_t && t <= max_t);
          *iter_out = is_within_range;
          if (is_within_range) {
            indexes_out.push_back(*iter_in);
            num_kept++;
          }
        }
        KALDI_ASSERT(iter_out == keep.end());
        if (num_kept == 0)
          KALDI_ERR << "FilterExample removed all indexes for '" << name << "'";
  
        FilterGeneralMatrixRows(io_in.features, keep,
                                &io_out.features);
        KALDI_ASSERT(io_out.features.NumRows() == num_kept &&
                     indexes_out.size() == static_cast<size_t>(num_kept));
      }
    }
  }
  
  
  /**
     This function is responsible for possibly selecting one frame from multiple
     supervised frames, and reducing the left and right context as specified.  If
     frame == "" it does not reduce the supervised frames; if frame == "random" it
     selects one random frame; otherwise it expects frame to be an integer, and
     will select only the output with that frame index (or return false if there was
     no such output).
  
     If left_context != -1 it removes any inputs with t < (smallest output - left_context).
        If left_context != -1 it removes any inputs with t < (smallest output - left_context).
  
     It returns true if it was able to select a frame.  We only anticipate it ever
     returning false in situations where frame is an integer, and the eg came from
     the end of a file and has a smaller than normal number of supervised frames.
  
  */
  bool SelectFromExample(const NnetExample &eg,
                         std::string frame_str,
                         int32 left_context,
                         int32 right_context,
                         int32 frame_shift,
                         NnetExample *eg_out) {
    static bool warned_left = false, warned_right = false;
    int32 min_input_t, max_input_t,
        min_output_t, max_output_t;
    if (!ContainsSingleExample(eg, &min_input_t, &max_input_t,
                               &min_output_t, &max_output_t))
      KALDI_ERR << "Too late to perform frame selection/context reduction on "
                << "these examples (already merged?)";
    if (frame_str != "") {
      // select one frame.
      if (frame_str == "random") {
        min_output_t = max_output_t = RandInt(min_output_t,
                                                            max_output_t);
      } else {
        int32 frame;
        if (!ConvertStringToInteger(frame_str, &frame))
          KALDI_ERR << "Invalid option --frame='" << frame_str << "'";
        if (frame < min_output_t || frame > max_output_t) {
          // Frame is out of range.  Should happen only rarely.  Calling code
          // makes sure of this.
          return false;
        }
        min_output_t = max_output_t = frame;
      }
    }
    if (left_context != -1) {
      if (!warned_left && min_input_t > min_output_t - left_context) {
        warned_left = true;
        KALDI_WARN << "You requested --left-context=" << left_context
                   << ", but example only has left-context of "
                   <<  (min_output_t - min_input_t)
                   << " (will warn only once; this may be harmless if "
            "using any --*left-context-initial options)";
      }
      min_input_t = std::max(min_input_t, min_output_t - left_context);
    }
    if (right_context != -1) {
      if (!warned_right && max_input_t < max_output_t + right_context) {
        warned_right = true;
        KALDI_WARN << "You requested --right-context=" << right_context
                  << ", but example only has right-context of "
                  <<  (max_input_t - max_output_t)
                   << " (will warn only once; this may be harmless if "
              "using any --*right-context-final options.";
      }
      max_input_t = std::min(max_input_t, max_output_t + right_context);
    }
    FilterExample(eg,
                  min_input_t, max_input_t,
                  min_output_t, max_output_t,
                  eg_out);
    if (frame_shift != 0) {
      std::vector<std::string> exclude_names;  // we can later make this
      exclude_names.push_back(std::string("ivector")); // configurable.
      ShiftExampleTimes(frame_shift, exclude_names, eg_out);
    }
    return true;
  }
  
  
  } // namespace nnet3
  } // namespace kaldi
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      using namespace kaldi::nnet3;
      typedef kaldi::int32 int32;
      typedef kaldi::int64 int64;
  
      const char *usage =
          "Copy examples (single frames or fixed-size groups of frames) for neural
  "
          "network training, possibly changing the binary mode.  Supports multiple wspecifiers, in
  "
          "which case it will write the examples round-robin to the outputs.
  "
          "
  "
          "Usage:  nnet3-copy-egs [options] <egs-rspecifier> <egs-wspecifier1> [<egs-wspecifier2> ...]
  "
          "
  "
          "e.g.
  "
          "nnet3-copy-egs ark:train.egs ark,t:text.egs
  "
          "or:
  "
          "nnet3-copy-egs ark:train.egs ark:1.egs ark:2.egs
  "
          "See also: nnet3-subset-egs, nnet3-get-egs, nnet3-merge-egs, nnet3-shuffle-egs
  ";
  
      bool random = false;
      int32 srand_seed = 0;
      int32 frame_shift = 0;
      BaseFloat keep_proportion = 1.0;
  
      // The following config variables, if set, can be used to extract a single
      // frame of labels from a multi-frame example, and/or to reduce the amount
      // of context.
      int32 left_context = -1, right_context = -1;
  
      // you can set frame to a number to select a single frame with a particular
      // offset, or to 'random' to select a random single frame.
      std::string frame_str,
        eg_weight_rspecifier, eg_output_name_rspecifier;
  
      ParseOptions po(usage);
      po.Register("random", &random, "If true, will write frames to output "
                  "archives randomly, not round-robin.");
      po.Register("frame-shift", &frame_shift, "Allows you to shift time values "
                  "in the supervision data (excluding iVector data).  Only really "
                  "useful in clockwork topologies (i.e. any topology for which "
                  "modulus != 1).  Shifting is done after any frame selection.");
      po.Register("keep-proportion", &keep_proportion, "If <1.0, this program will "
                  "randomly keep this proportion of the input samples.  If >1.0, it will "
                  "in expectation copy a sample this many times.  It will copy it a number "
                  "of times equal to floor(keep-proportion) or ceil(keep-proportion).");
      po.Register("srand", &srand_seed, "Seed for random number generator "
                  "(only relevant if --random=true or --keep-proportion != 1.0)");
      po.Register("frame", &frame_str, "This option can be used to select a single "
                  "frame from each multi-frame example.  Set to a number 0, 1, etc. "
                  "to select a frame with a given index, or 'random' to select a "
                  "random frame.");
      po.Register("left-context", &left_context, "Can be used to truncate the "
                  "feature left-context that we output.");
      po.Register("right-context", &right_context, "Can be used to truncate the "
                  "feature right-context that we output.");
      po.Register("weights", &eg_weight_rspecifier,
                  "Rspecifier indexed by the key of egs, providing a weight by "
                  "which we will scale the supervision matrix for that eg. "
                  "Used in multilingual training.");
      po.Register("outputs", &eg_output_name_rspecifier,
                  "Rspecifier indexed by the key of egs, providing a string-valued "
                  "output name, e.g. 'output-0'.  If provided, the NnetIo with "
                  "name 'output' will be renamed to the provided name. Used in "
                  "multilingual training.");
      po.Read(argc, argv);
  
      srand(srand_seed);
  
      if (po.NumArgs() < 2) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string examples_rspecifier = po.GetArg(1);
  
      SequentialNnetExampleReader example_reader(examples_rspecifier);
  
      // In the normal case, these would not be used. These are only applicable
      // for multi-task or multilingual training.
      RandomAccessTokenReader output_name_reader(eg_output_name_rspecifier);
      RandomAccessBaseFloatReader egs_weight_reader(eg_weight_rspecifier);
  
      int32 num_outputs = po.NumArgs() - 1;
      std::vector<NnetExampleWriter*> example_writers(num_outputs);
      for (int32 i = 0; i < num_outputs; i++)
        example_writers[i] = new NnetExampleWriter(po.GetArg(i+2));
  
  
      int64 num_read = 0, num_written = 0, num_err = 0;
      for (; !example_reader.Done(); example_reader.Next(), num_read++) {
        const std::string &key = example_reader.Key();
        NnetExample &eg = example_reader.Value();
        // count is normally 1; could be 0, or possibly >1.
        int32 count = GetCount(keep_proportion);
  
        if (!eg_weight_rspecifier.empty()) {
          BaseFloat weight = 1.0;
          if (!egs_weight_reader.HasKey(key)) {
            KALDI_WARN << "No weight for example key " << key;
            num_err++;
            continue;
          }
          weight = egs_weight_reader.Value(key);
          ScaleSupervisionWeight(weight, &eg);
        }
  
        std::string new_output_name;
        if (!eg_output_name_rspecifier.empty()) {
          if (!output_name_reader.HasKey(key)) {
            KALDI_WARN << "No new output-name for example key " << key;
            num_err++;
            continue;
          }
          new_output_name = output_name_reader.Value(key);
        }
        for (int32 c = 0; c < count; c++) {
          int32 index = (random ? Rand() : num_written) % num_outputs;
          if (frame_str == "" && left_context == -1 && right_context == -1 &&
              frame_shift == 0) {
            if (!new_output_name.empty() && c == 0)
              RenameOutputs(new_output_name, &eg);
            example_writers[index]->Write(key, eg);
            num_written++;
          } else { // the --frame option or context options were set.
            NnetExample eg_modified;
            if (SelectFromExample(eg, frame_str, left_context, right_context,
                                  frame_shift, &eg_modified)) {
              if (!new_output_name.empty())
                RenameOutputs(new_output_name, &eg_modified);
              // this branch of the if statement will almost always be taken (should only
              // not be taken for shorter-than-normal egs from the end of a file.
              example_writers[index]->Write(key, eg_modified);
              num_written++;
            }
          }
        }
      }
  
      for (int32 i = 0; i < num_outputs; i++)
        delete example_writers[i];
      KALDI_LOG << "Read " << num_read << " neural-network training examples, wrote "
                << num_written << ", "
                << num_err <<  " examples had errors.";
      return (num_written == 0 ? 1 : 0);
    } catch(const std::exception &e) {
      std::cerr << e.what() << '
  ';
      return -1;
    }
  }