Blame view
src/nnet3bin/nnet3-discriminative-compute-from-egs.cc
4.86 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
// nnet3bin/nnet3-discriminative-compute-from-egs.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet3/nnet-nnet.h" #include "nnet3/nnet-example-utils.h" #include "nnet3/nnet-discriminative-example.h" #include "nnet3/nnet-optimize.h" namespace kaldi { namespace nnet3 { class NnetComputerFromEg { public: NnetComputerFromEg(const Nnet &nnet): nnet_(nnet), compiler_(nnet) { } // Compute the output (which will have the same number of rows as the number // of Indexes in the output of the eg), and put it in "output". void Compute(const NnetExample &eg, Matrix<BaseFloat> *output) { ComputationRequest request; bool need_backprop = false, store_stats = false; GetComputationRequest(nnet_, eg, need_backprop, store_stats, &request); const NnetComputation &computation = *(compiler_.Compile(request)); NnetComputeOptions options; if (GetVerboseLevel() >= 3) options.debug = true; NnetComputer computer(options, computation, nnet_, NULL); computer.AcceptInputs(nnet_, eg.io); computer.Run(); const CuMatrixBase<BaseFloat> &nnet_output = computer.GetOutput("output"); output->Resize(nnet_output.NumRows(), nnet_output.NumCols()); nnet_output.CopyToMat(output); } private: const Nnet &nnet_; CachingOptimizingCompiler compiler_; }; } } int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Read input nnet discriminative training examples, and compute the " "output for each one. This program is similar to " "nnet3-compute-from-egs, but works with discriminative egs. " "If --apply-exp=true, apply the Exp() function to the output before writing " "it out. " "Note: This program uses only the input; it does not do forward-backward " "over the lattice. See nnet3-discriminative-compute-objf for that. " " " "Usage: nnet3-discriminative-compute-from-egs [options] <raw-nnet-in> <training-examples-in> <matrices-out> " "e.g.: " "nnet3-discriminative-compute-from-egs --apply-exp=true 0.raw ark:1.degs ark:- | matrix-sum-rows ark:- ... " "See also: nnet3-compute nnet3-compute-from-egs "; bool binary_write = true, apply_exp = false; std::string use_gpu = "yes"; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("apply-exp", &apply_exp, "If true, apply exp function to " "output"); po.Register("use-gpu", &use_gpu, "yes|no|optional|wait, only has effect if compiled with CUDA"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } #if HAVE_CUDA==1 CuDevice::Instantiate().SelectGpuId(use_gpu); #endif std::string nnet_rxfilename = po.GetArg(1), examples_rspecifier = po.GetArg(2), matrix_wspecifier = po.GetArg(3); Nnet nnet; ReadKaldiObject(nnet_rxfilename, &nnet); NnetComputerFromEg computer(nnet); int64 num_egs = 0; SequentialNnetDiscriminativeExampleReader example_reader(examples_rspecifier); BaseFloatMatrixWriter matrix_writer(matrix_wspecifier); for (; !example_reader.Done(); example_reader.Next(), num_egs++) { Matrix<BaseFloat> output; NnetExample eg; NnetDiscriminativeExample disc_eg = example_reader.Value(); eg.io.swap(disc_eg.inputs); for (int32 i = 0; i < disc_eg.outputs.size(); i++) { NnetIo io; io.name = disc_eg.outputs[i].name; io.indexes = disc_eg.outputs[i].indexes; eg.io.push_back(io); } computer.Compute(eg, &output); KALDI_ASSERT(output.NumRows() != 0); if (apply_exp) output.ApplyExp(); matrix_writer.Write(example_reader.Key(), output); } #if HAVE_CUDA==1 CuDevice::Instantiate().PrintProfile(); #endif KALDI_LOG << "Processed " << num_egs << " examples."; return 0; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |