Blame view
src/nnet3bin/nnet3-discriminative-compute-objf.cc
3.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
// nnet3bin/nnet3-discriminative-compute-objf.cc // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // 2014-2015 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet3/nnet-discriminative-diagnostics.h" #include "nnet3/am-nnet-simple.h" #include "nnet3/nnet-utils.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Computes and prints to in logging messages the objective function per frame of " "the given data with an nnet3 neural net. The input of this is the output of " "e.g. nnet3-discriminative-get-egs | nnet3-discriminative-merge-egs. " " " "Usage: nnet3-discrminative-compute-objf [options] <nnet3-model-in> <training-examples-in> " "e.g.: nnet3-discriminative-compute-objf 0.mdl ark:valid.degs "; bool batchnorm_test_mode = true, dropout_test_mode = true; // This program doesn't support using a GPU, because these probabilities are // used for diagnostics, and you can just compute them with a small enough // amount of data that a CPU can do it within reasonable time. // It wouldn't be hard to make it support GPU, though. NnetComputeProbOptions nnet_opts; discriminative::DiscriminativeOptions discriminative_opts; ParseOptions po(usage); po.Register("batchnorm-test-mode", &batchnorm_test_mode, "If true, set test-mode to true on any BatchNormComponents."); po.Register("dropout-test-mode", &dropout_test_mode, "If true, set test-mode to true on any DropoutComponents and " "DropoutMaskComponents."); nnet_opts.Register(&po); discriminative_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string model_rxfilename = po.GetArg(1), examples_rspecifier = po.GetArg(2); TransitionModel tmodel; AmNnetSimple am_nnet; { bool binary; Input ki(model_rxfilename, &binary); tmodel.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } Nnet* nnet = &(am_nnet.GetNnet()); if (batchnorm_test_mode) SetBatchnormTestMode(true, nnet); if (dropout_test_mode) SetDropoutTestMode(true, nnet); NnetDiscriminativeComputeObjf discriminative_objf_computer(nnet_opts, discriminative_opts, tmodel, am_nnet.Priors(), *nnet); SequentialNnetDiscriminativeExampleReader example_reader(examples_rspecifier); for (; !example_reader.Done(); example_reader.Next()) discriminative_objf_computer.Compute(example_reader.Value()); bool ok = discriminative_objf_computer.PrintTotalStats(); return (ok ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |