Blame view
src/nnet3bin/nnet3-discriminative-copy-egs.cc
5.07 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
// nnet3bin/nnet3-discriminative-copy-egs.cc // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // 2014-2015 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet3/nnet-discriminative-example.h" namespace kaldi { // returns an integer randomly drawn with expected value "expected_count" // (will be either floor(expected_count) or ceil(expected_count)). int32 GetCount(double expected_count) { KALDI_ASSERT(expected_count >= 0.0); int32 ans = floor(expected_count); expected_count -= ans; if (WithProb(expected_count)) ans++; return ans; } } int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Copy examples for nnet3 discriminative training, possibly changing the binary mode. " "Supports multiple wspecifiers, in which case it will write the examples " "round-robin to the outputs. " " " "Usage: nnet3-discriminative-copy-egs [options] <egs-rspecifier> <egs-wspecifier1> [<egs-wspecifier2> ...] " " " "e.g. " "nnet3-discriminative-copy-egs ark:train.degs ark,t:text.degs " "or: " "nnet3-discriminative-copy-egs ark:train.degs ark:1.degs ark:2.degs "; bool random = false; int32 srand_seed = 0; int32 frame_shift = 0; BaseFloat keep_proportion = 1.0; ParseOptions po(usage); po.Register("random", &random, "If true, will write frames to output " "archives randomly, not round-robin."); po.Register("keep-proportion", &keep_proportion, "If <1.0, this program will " "randomly keep this proportion of the input samples. If >1.0, it will " "in expectation copy a sample this many times. It will copy it a number " "of times equal to floor(keep-proportion) or ceil(keep-proportion)."); po.Register("srand", &srand_seed, "Seed for random number generator " "(only relevant if --random=true or --keep-proportion != 1.0)"); po.Register("frame-shift", &frame_shift, "Allows you to shift time values " "in the supervision data (excluding iVector data) - useful in " "augmenting data. Note, the outputs will remain at the closest " "exact multiples of the frame subsampling factor"); po.Read(argc, argv); srand(srand_seed); if (po.NumArgs() < 2) { po.PrintUsage(); exit(1); } std::string examples_rspecifier = po.GetArg(1); SequentialNnetDiscriminativeExampleReader example_reader(examples_rspecifier); int32 num_outputs = po.NumArgs() - 1; std::vector<NnetDiscriminativeExampleWriter*> example_writers(num_outputs); for (int32 i = 0; i < num_outputs; i++) example_writers[i] = new NnetDiscriminativeExampleWriter(po.GetArg(i+2)); std::vector<std::string> exclude_names; // names we never shift times of; // not configurable for now. exclude_names.push_back(std::string("ivector")); int64 num_read = 0, num_written = 0; for (; !example_reader.Done(); example_reader.Next(), num_read++) { // count is normally 1; could be 0, or possibly >1. int32 count = GetCount(keep_proportion); std::string key = example_reader.Key(); if (frame_shift == 0) { const NnetDiscriminativeExample &eg = example_reader.Value(); for (int32 c = 0; c < count; c++) { int32 index = (random ? Rand() : num_written) % num_outputs; example_writers[index]->Write(key, eg); num_written++; } } else if (count > 0) { NnetDiscriminativeExample eg = example_reader.Value(); if (frame_shift != 0) ShiftDiscriminativeExampleTimes(frame_shift, exclude_names, &eg); for (int32 c = 0; c < count; c++) { int32 index = (random ? Rand() : num_written) % num_outputs; example_writers[index]->Write(key, eg); num_written++; } } } for (int32 i = 0; i < num_outputs; i++) delete example_writers[i]; KALDI_LOG << "Read " << num_read << " neural-network training examples, wrote " << num_written; return (num_written == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |