Blame view

src/nnet3bin/nnet3-discriminative-get-egs.cc 11.2 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
  // nnet3bin/nnet3-discriminative-get-egs.cc
  
  // Copyright      2015  Johns Hopkins University (author:  Daniel Povey)
  //           2014-2015  Vimal Manohar
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <sstream>
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "hmm/transition-model.h"
  #include "hmm/posterior.h"
  #include "nnet3/nnet-discriminative-example.h"
  #include "nnet3/discriminative-supervision.h"
  #include "nnet3/nnet-example-utils.h"
  #include "chain/chain-supervision.h"
  
  namespace kaldi {
  namespace nnet3 {
  
  // This function does all the processing for one utterance, and outputs the
  // examples to 'example_writer'.
  // returns true if we got as far as calling GetChunksForUtterance()
  // [in which case stats will be accumulated by class UtteranceSplitter]
  static bool ProcessFile(const discriminative::SplitDiscriminativeSupervisionOptions &config,
                          const TransitionModel &tmodel,
                          const MatrixBase<BaseFloat> &feats,
                          const MatrixBase<BaseFloat> *ivector_feats,
                          int32 ivector_period,
                          const discriminative::DiscriminativeSupervision &supervision,
                          const std::string &utt_id,
                          bool compress,
                          UtteranceSplitter *utt_splitter,
                          NnetDiscriminativeExampleWriter *example_writer) {
    KALDI_ASSERT(supervision.num_sequences == 1);
    int32 num_input_frames = feats.NumRows(),
        num_output_frames = supervision.frames_per_sequence;
  
    if (!utt_splitter->LengthsMatch(utt_id, num_input_frames, num_output_frames))
      return false;  // LengthsMatch() will have printed a warning.
  
    std::vector<ChunkTimeInfo> chunks;
  
    utt_splitter->GetChunksForUtterance(num_input_frames, &chunks);
  
    if (chunks.empty()) {
      KALDI_WARN << "Not producing egs for utterance " << utt_id
                 << " because it is too short: "
                 << num_input_frames << " frames.";
    }
  
    int32 frame_subsampling_factor = utt_splitter->Config().frame_subsampling_factor;
  
    discriminative::DiscriminativeSupervisionSplitter splitter(config, tmodel,
                                                               supervision);
  
    for (size_t c = 0; c < chunks.size(); c++) {
      ChunkTimeInfo &chunk = chunks[c];
  
      NnetDiscriminativeExample nnet_discriminative_eg;
      nnet_discriminative_eg.outputs.resize(1);
  
      int32 start_frame_subsampled = chunk.first_frame / frame_subsampling_factor,
          num_frames_subsampled = chunk.num_frames / frame_subsampling_factor;
  
      discriminative::DiscriminativeSupervision supervision_part;
  
      splitter.GetFrameRange(start_frame_subsampled,
                             num_frames_subsampled,
                             (c == 0 ? false : true),
                             &supervision_part);
  
      SubVector<BaseFloat> output_weights(
          &(chunk.output_weights[0]),
          static_cast<int32>(chunk.output_weights.size()));
  
      int32 first_frame = 0;  // we shift the time-indexes of all these parts so
                              // that the supervised part starts from frame 0.
      NnetDiscriminativeSupervision nnet_supervision("output", supervision_part,
                                                     output_weights,
                                                     first_frame,
                                                     frame_subsampling_factor);
      nnet_discriminative_eg.outputs[0].Swap(&nnet_supervision);
  
      nnet_discriminative_eg.inputs.resize(ivector_feats != NULL ? 2 : 1);
  
  
      int32 tot_input_frames = chunk.left_context + chunk.num_frames +
          chunk.right_context;
  
      Matrix<BaseFloat> input_frames(tot_input_frames, feats.NumCols(),
                                     kUndefined);
  
      int32 start_frame = chunk.first_frame - chunk.left_context;
      for (int32 t = start_frame; t < start_frame + tot_input_frames; t++) {
        int32 t2 = t;
        if (t2 < 0) t2 = 0;
        if (t2 >= num_input_frames) t2 = num_input_frames - 1;
        int32 j = t - start_frame;
        SubVector<BaseFloat> src(feats, t2),
            dest(input_frames, j);
        dest.CopyFromVec(src);
      }
  
      NnetIo input_io("input", -chunk.left_context, input_frames);
      nnet_discriminative_eg.inputs[0].Swap(&input_io);
  
      if (ivector_feats != NULL) {
        // if applicable, add the iVector feature.
        // choose iVector from a random frame in the chunk
        int32 ivector_frame = RandInt(start_frame,
                                      start_frame + num_input_frames - 1),
            ivector_frame_subsampled = ivector_frame / ivector_period;
        if (ivector_frame_subsampled < 0)
          ivector_frame_subsampled = 0;
        if (ivector_frame_subsampled >= ivector_feats->NumRows())
          ivector_frame_subsampled = ivector_feats->NumRows() - 1;
        Matrix<BaseFloat> ivector(1, ivector_feats->NumCols());
        ivector.Row(0).CopyFromVec(ivector_feats->Row(ivector_frame_subsampled));
        NnetIo ivector_io("ivector", 0, ivector);
        nnet_discriminative_eg.inputs[1].Swap(&ivector_io);
      }
  
      if (compress)
        nnet_discriminative_eg.Compress();
  
      std::ostringstream os;
      os << utt_id << "-" << chunk.first_frame;
  
      std::string key = os.str(); // key is <utt_id>-<frame_id>
  
      example_writer->Write(key, nnet_discriminative_eg);
    }
    return true;
  }
  
  
  } // namespace nnet3
  } // namespace kaldi
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      using namespace kaldi::nnet3;
      typedef kaldi::int32 int32;
      typedef kaldi::int64 int64;
  
      const char *usage =
          "Get frame-by-frame examples of data for nnet3+sequence neural network
  "
          "training.  This involves breaking up utterances into pieces of sizes
  "
          "determined by the --num-frames option.
  "
          "
  "
          "Usage:  nnet3-discriminative-get-egs [options] <model> <features-rspecifier> "
          "<denominator-lattice-rspecifier> <numerator-alignment-rspecifier> <egs-wspecifier>
  "
          "
  "
          "An example [where $feats expands to the actual features]:
  "
          "  nnet3-discriminative-get-egs --left-context=25 --right-context=9 --num-frames=150,100,90 \\
  "
          "  \"$feats\" \"ark,s,cs:gunzip -c lat.1.gz\" scp:ali.scp ark:degs.1.ark
  ";
  
      bool compress = true;
      int32 length_tolerance = 100, online_ivector_period = 1;
  
      std::string online_ivector_rspecifier;
  
      ExampleGenerationConfig eg_config;  // controls num-frames,
                                          // left/right-context, etc.
      discriminative::SplitDiscriminativeSupervisionOptions splitter_config;
  
      ParseOptions po(usage);
  
      eg_config.Register(&po);
      po.Register("compress", &compress, "If true, write egs in "
                  "compressed format (recommended)");
      po.Register("ivectors", &online_ivector_rspecifier, "Alias for --online-ivectors "
                  "option, for back compatibility");
      po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier of ivector "
                  "features, as a matrix.");
      po.Register("online-ivector-period", &online_ivector_period, "Number of frames "
                  "between iVectors in matrices supplied to the --online-ivectors "
                  "option");
      po.Register("length-tolerance", &length_tolerance, "Tolerance for "
                  "difference in num-frames between feat and ivector matrices");
  
      splitter_config.Register(&po);
  
      po.Read(argc, argv);
  
      if (po.NumArgs() != 5) {
        po.PrintUsage();
        exit(1);
      }
  
      eg_config.ComputeDerived();
      UtteranceSplitter utt_splitter(eg_config);
  
      std::string model_wxfilename = po.GetArg(1),
          feature_rspecifier = po.GetArg(2),
          den_lat_rspecifier = po.GetArg(3),
          num_ali_rspecifier = po.GetArg(4),
          examples_wspecifier = po.GetArg(5);
  
  
      TransitionModel tmodel;
      {
        bool binary;
        Input ki(model_wxfilename, &binary);
        tmodel.Read(ki.Stream(), binary);
      }
  
      SequentialBaseFloatMatrixReader feat_reader(feature_rspecifier);
      RandomAccessLatticeReader den_lat_reader(den_lat_rspecifier);
      RandomAccessInt32VectorReader ali_reader(num_ali_rspecifier);
      NnetDiscriminativeExampleWriter example_writer(examples_wspecifier);
      RandomAccessBaseFloatMatrixReader online_ivector_reader(
          online_ivector_rspecifier);
  
      int32 num_err = 0;
  
      for (; !feat_reader.Done(); feat_reader.Next()) {
        std::string key = feat_reader.Key();
        const Matrix<BaseFloat> &feats = feat_reader.Value();
        if (!den_lat_reader.HasKey(key)) {
          KALDI_WARN << "No denominator lattice for key " << key;
          num_err++;
        } else if (!ali_reader.HasKey(key)) {
          KALDI_WARN << "No numerator alignment for key " << key;
          num_err++;
        } else {
          discriminative::DiscriminativeSupervision supervision;
          if (!supervision.Initialize(ali_reader.Value(key),
                                      den_lat_reader.Value(key),
                                      1.0)) {
            KALDI_WARN << "Failed to convert lattice to supervision "
                       << "for utterance " << key;
            num_err++;
            continue;
          }
  
          const Matrix<BaseFloat> *online_ivector_feats = NULL;
          if (!online_ivector_rspecifier.empty()) {
            if (!online_ivector_reader.HasKey(key)) {
              KALDI_WARN << "No iVectors for utterance " << key;
              num_err++;
              continue;
            } else {
              // this address will be valid until we call HasKey() or Value()
              // again.
              online_ivector_feats = &(online_ivector_reader.Value(key));
            }
          }
          if (online_ivector_feats != NULL &&
              (abs(feats.NumRows() - (online_ivector_feats->NumRows() *
                                      online_ivector_period)) > length_tolerance
               || online_ivector_feats->NumRows() == 0)) {
            KALDI_WARN << "Length difference between feats " << feats.NumRows()
                       << " and iVectors " << online_ivector_feats->NumRows()
                       << "exceeds tolerance " << length_tolerance;
            num_err++;
            continue;
          }
          if (!ProcessFile(splitter_config, tmodel,
                           feats, online_ivector_feats, online_ivector_period,
                           supervision, key, compress,
                           &utt_splitter, &example_writer))
            num_err++;
        }
      }
      if (num_err > 0)
        KALDI_WARN << num_err << " utterances had errors and could "
            "not be processed.";
      // utt_splitter prints diagnostics.
      return utt_splitter.ExitStatus();
    } catch(const std::exception &e) {
      std::cerr << e.what() << '
  ';
      return -1;
    }
  }