Blame view
src/nnet3bin/nnet3-discriminative-get-egs.cc
11.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
// nnet3bin/nnet3-discriminative-get-egs.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // 2014-2015 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <sstream> #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "hmm/posterior.h" #include "nnet3/nnet-discriminative-example.h" #include "nnet3/discriminative-supervision.h" #include "nnet3/nnet-example-utils.h" #include "chain/chain-supervision.h" namespace kaldi { namespace nnet3 { // This function does all the processing for one utterance, and outputs the // examples to 'example_writer'. // returns true if we got as far as calling GetChunksForUtterance() // [in which case stats will be accumulated by class UtteranceSplitter] static bool ProcessFile(const discriminative::SplitDiscriminativeSupervisionOptions &config, const TransitionModel &tmodel, const MatrixBase<BaseFloat> &feats, const MatrixBase<BaseFloat> *ivector_feats, int32 ivector_period, const discriminative::DiscriminativeSupervision &supervision, const std::string &utt_id, bool compress, UtteranceSplitter *utt_splitter, NnetDiscriminativeExampleWriter *example_writer) { KALDI_ASSERT(supervision.num_sequences == 1); int32 num_input_frames = feats.NumRows(), num_output_frames = supervision.frames_per_sequence; if (!utt_splitter->LengthsMatch(utt_id, num_input_frames, num_output_frames)) return false; // LengthsMatch() will have printed a warning. std::vector<ChunkTimeInfo> chunks; utt_splitter->GetChunksForUtterance(num_input_frames, &chunks); if (chunks.empty()) { KALDI_WARN << "Not producing egs for utterance " << utt_id << " because it is too short: " << num_input_frames << " frames."; } int32 frame_subsampling_factor = utt_splitter->Config().frame_subsampling_factor; discriminative::DiscriminativeSupervisionSplitter splitter(config, tmodel, supervision); for (size_t c = 0; c < chunks.size(); c++) { ChunkTimeInfo &chunk = chunks[c]; NnetDiscriminativeExample nnet_discriminative_eg; nnet_discriminative_eg.outputs.resize(1); int32 start_frame_subsampled = chunk.first_frame / frame_subsampling_factor, num_frames_subsampled = chunk.num_frames / frame_subsampling_factor; discriminative::DiscriminativeSupervision supervision_part; splitter.GetFrameRange(start_frame_subsampled, num_frames_subsampled, (c == 0 ? false : true), &supervision_part); SubVector<BaseFloat> output_weights( &(chunk.output_weights[0]), static_cast<int32>(chunk.output_weights.size())); int32 first_frame = 0; // we shift the time-indexes of all these parts so // that the supervised part starts from frame 0. NnetDiscriminativeSupervision nnet_supervision("output", supervision_part, output_weights, first_frame, frame_subsampling_factor); nnet_discriminative_eg.outputs[0].Swap(&nnet_supervision); nnet_discriminative_eg.inputs.resize(ivector_feats != NULL ? 2 : 1); int32 tot_input_frames = chunk.left_context + chunk.num_frames + chunk.right_context; Matrix<BaseFloat> input_frames(tot_input_frames, feats.NumCols(), kUndefined); int32 start_frame = chunk.first_frame - chunk.left_context; for (int32 t = start_frame; t < start_frame + tot_input_frames; t++) { int32 t2 = t; if (t2 < 0) t2 = 0; if (t2 >= num_input_frames) t2 = num_input_frames - 1; int32 j = t - start_frame; SubVector<BaseFloat> src(feats, t2), dest(input_frames, j); dest.CopyFromVec(src); } NnetIo input_io("input", -chunk.left_context, input_frames); nnet_discriminative_eg.inputs[0].Swap(&input_io); if (ivector_feats != NULL) { // if applicable, add the iVector feature. // choose iVector from a random frame in the chunk int32 ivector_frame = RandInt(start_frame, start_frame + num_input_frames - 1), ivector_frame_subsampled = ivector_frame / ivector_period; if (ivector_frame_subsampled < 0) ivector_frame_subsampled = 0; if (ivector_frame_subsampled >= ivector_feats->NumRows()) ivector_frame_subsampled = ivector_feats->NumRows() - 1; Matrix<BaseFloat> ivector(1, ivector_feats->NumCols()); ivector.Row(0).CopyFromVec(ivector_feats->Row(ivector_frame_subsampled)); NnetIo ivector_io("ivector", 0, ivector); nnet_discriminative_eg.inputs[1].Swap(&ivector_io); } if (compress) nnet_discriminative_eg.Compress(); std::ostringstream os; os << utt_id << "-" << chunk.first_frame; std::string key = os.str(); // key is <utt_id>-<frame_id> example_writer->Write(key, nnet_discriminative_eg); } return true; } } // namespace nnet3 } // namespace kaldi int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Get frame-by-frame examples of data for nnet3+sequence neural network " "training. This involves breaking up utterances into pieces of sizes " "determined by the --num-frames option. " " " "Usage: nnet3-discriminative-get-egs [options] <model> <features-rspecifier> " "<denominator-lattice-rspecifier> <numerator-alignment-rspecifier> <egs-wspecifier> " " " "An example [where $feats expands to the actual features]: " " nnet3-discriminative-get-egs --left-context=25 --right-context=9 --num-frames=150,100,90 \\ " " \"$feats\" \"ark,s,cs:gunzip -c lat.1.gz\" scp:ali.scp ark:degs.1.ark "; bool compress = true; int32 length_tolerance = 100, online_ivector_period = 1; std::string online_ivector_rspecifier; ExampleGenerationConfig eg_config; // controls num-frames, // left/right-context, etc. discriminative::SplitDiscriminativeSupervisionOptions splitter_config; ParseOptions po(usage); eg_config.Register(&po); po.Register("compress", &compress, "If true, write egs in " "compressed format (recommended)"); po.Register("ivectors", &online_ivector_rspecifier, "Alias for --online-ivectors " "option, for back compatibility"); po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier of ivector " "features, as a matrix."); po.Register("online-ivector-period", &online_ivector_period, "Number of frames " "between iVectors in matrices supplied to the --online-ivectors " "option"); po.Register("length-tolerance", &length_tolerance, "Tolerance for " "difference in num-frames between feat and ivector matrices"); splitter_config.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 5) { po.PrintUsage(); exit(1); } eg_config.ComputeDerived(); UtteranceSplitter utt_splitter(eg_config); std::string model_wxfilename = po.GetArg(1), feature_rspecifier = po.GetArg(2), den_lat_rspecifier = po.GetArg(3), num_ali_rspecifier = po.GetArg(4), examples_wspecifier = po.GetArg(5); TransitionModel tmodel; { bool binary; Input ki(model_wxfilename, &binary); tmodel.Read(ki.Stream(), binary); } SequentialBaseFloatMatrixReader feat_reader(feature_rspecifier); RandomAccessLatticeReader den_lat_reader(den_lat_rspecifier); RandomAccessInt32VectorReader ali_reader(num_ali_rspecifier); NnetDiscriminativeExampleWriter example_writer(examples_wspecifier); RandomAccessBaseFloatMatrixReader online_ivector_reader( online_ivector_rspecifier); int32 num_err = 0; for (; !feat_reader.Done(); feat_reader.Next()) { std::string key = feat_reader.Key(); const Matrix<BaseFloat> &feats = feat_reader.Value(); if (!den_lat_reader.HasKey(key)) { KALDI_WARN << "No denominator lattice for key " << key; num_err++; } else if (!ali_reader.HasKey(key)) { KALDI_WARN << "No numerator alignment for key " << key; num_err++; } else { discriminative::DiscriminativeSupervision supervision; if (!supervision.Initialize(ali_reader.Value(key), den_lat_reader.Value(key), 1.0)) { KALDI_WARN << "Failed to convert lattice to supervision " << "for utterance " << key; num_err++; continue; } const Matrix<BaseFloat> *online_ivector_feats = NULL; if (!online_ivector_rspecifier.empty()) { if (!online_ivector_reader.HasKey(key)) { KALDI_WARN << "No iVectors for utterance " << key; num_err++; continue; } else { // this address will be valid until we call HasKey() or Value() // again. online_ivector_feats = &(online_ivector_reader.Value(key)); } } if (online_ivector_feats != NULL && (abs(feats.NumRows() - (online_ivector_feats->NumRows() * online_ivector_period)) > length_tolerance || online_ivector_feats->NumRows() == 0)) { KALDI_WARN << "Length difference between feats " << feats.NumRows() << " and iVectors " << online_ivector_feats->NumRows() << "exceeds tolerance " << length_tolerance; num_err++; continue; } if (!ProcessFile(splitter_config, tmodel, feats, online_ivector_feats, online_ivector_period, supervision, key, compress, &utt_splitter, &example_writer)) num_err++; } } if (num_err > 0) KALDI_WARN << num_err << " utterances had errors and could " "not be processed."; // utt_splitter prints diagnostics. return utt_splitter.ExitStatus(); } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |