Blame view

src/nnet3bin/nnet3-discriminative-shuffle-egs.cc 4.13 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
  // nnet3bin/nnet3-discriminative-shuffle-egs.cc
  
  // Copyright 2012-2015  Johns Hopkins University (author:  Daniel Povey)
  //           2014-2015  Vimal Manohar
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "hmm/transition-model.h"
  #include "nnet3/nnet-discriminative-example.h"
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      using namespace kaldi::nnet3;
      typedef kaldi::int32 int32;
      typedef kaldi::int64 int64;
  
      const char *usage =
          "Copy nnet3 discriminative training examples from the input to output,
  "
          "while randomly shuffling the order.  This program will keep all of the examples
  "
          "in memory at once, unless you use the --buffer-size option
  "
          "
  "
          "Usage:  nnet3-discriminative-shuffle-egs [options] <egs-rspecifier> <egs-wspecifier>
  "
          "
  "
          "nnet3-discriminative-shuffle-egs --srand=1 ark:train.egs ark:shuffled.egs
  ";
  
      int32 srand_seed = 0;
      int32 buffer_size = 0;
      ParseOptions po(usage);
      po.Register("srand", &srand_seed, "Seed for random number generator ");
      po.Register("buffer-size", &buffer_size, "If >0, size of a buffer we use "
                  "to do limited-memory partial randomization.  Otherwise, do "
                  "full randomization.");
  
      po.Read(argc, argv);
  
      srand(srand_seed);
  
      if (po.NumArgs() != 2) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string examples_rspecifier = po.GetArg(1),
          examples_wspecifier = po.GetArg(2);
  
      int64 num_done = 0;
  
      std::vector<std::pair<std::string, NnetDiscriminativeExample*> > egs;
  
      SequentialNnetDiscriminativeExampleReader example_reader(examples_rspecifier);
      NnetDiscriminativeExampleWriter example_writer(examples_wspecifier);
      if (buffer_size == 0) { // Do full randomization
        // Putting in an extra level of indirection here to avoid excessive
        // computation and memory demands when we have to resize the vector.
  
        for (; !example_reader.Done(); example_reader.Next())
          egs.push_back(std::pair<std::string, NnetDiscriminativeExample*>(
              example_reader.Key(),
              new NnetDiscriminativeExample(example_reader.Value())));
  
        std::random_shuffle(egs.begin(), egs.end());
      } else {
        KALDI_ASSERT(buffer_size > 0);
        egs.resize(buffer_size,
                   std::pair<std::string, NnetDiscriminativeExample*>("", NULL));
        for (; !example_reader.Done(); example_reader.Next()) {
          int32 index = RandInt(0, buffer_size - 1);
          if (egs[index].second == NULL) {
            egs[index] = std::pair<std::string, NnetDiscriminativeExample*>(
                example_reader.Key(),
                new NnetDiscriminativeExample(example_reader.Value()));
          } else {
            example_writer.Write(egs[index].first, *(egs[index].second));
            egs[index].first = example_reader.Key();
            *(egs[index].second) = example_reader.Value();
            num_done++;
          }
        }
      }
      for (size_t i = 0; i < egs.size(); i++) {
        if (egs[i].second != NULL) {
          example_writer.Write(egs[i].first, *(egs[i].second));
          delete egs[i].second;
          num_done++;
        }
      }
  
      KALDI_LOG << "Shuffled order of " << num_done
                << " neural-network training examples "
                << (buffer_size ? "using a buffer (partial randomization)" : "");
  
      return (num_done == 0 ? 1 : 0);
    } catch(const std::exception &e) {
      std::cerr << e.what() << '
  ';
      return -1;
    }
  }