Blame view
src/nnet3bin/nnet3-egs-augment-image.cc
14.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
// nnet3bin/nnet3-egs-augment-image.cc // Copyright 2017 Johns Hopkins University (author: Daniel Povey) // 2017 Hossein Hadian // 2017 Yiwen Shao // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet3/nnet-example.h" #include "nnet3/nnet-example-utils.h" namespace kaldi { namespace nnet3 { enum FillMode { kNearest, kReflect }; struct ImageAugmentationConfig { int32 num_channels; BaseFloat horizontal_flip_prob; BaseFloat horizontal_shift; BaseFloat vertical_shift; BaseFloat rotation_degree; BaseFloat rotation_prob; std::string fill_mode_string; ImageAugmentationConfig(): num_channels(1), horizontal_flip_prob(0.0), horizontal_shift(0.0), vertical_shift(0.0), rotation_degree(0.0), rotation_prob(0.0), fill_mode_string("nearest") { } void Register(ParseOptions *po) { po->Register("num-channels", &num_channels, "Number of colors in the image." "It is important to specify this (helps interpret the image " "correctly."); po->Register("horizontal-flip-prob", &horizontal_flip_prob, "Probability of doing horizontal flip"); po->Register("horizontal-shift", &horizontal_shift, "Maximum allowed horizontal shift as proportion of image " "width. Padding is with closest pixel."); po->Register("vertical-shift", &vertical_shift, "Maximum allowed vertical shift as proportion of image " "height. Padding is with closest pixel."); po->Register("rotation-degree", &rotation_degree, "Maximum allowed degree to rotate the image"); po->Register("rotation-prob", &rotation_prob, "Probability of doing rotation"); po->Register("fill-mode", &fill_mode_string, "Mode for dealing with " "points outside the image boundary when applying transformation. " "Choices = {nearest, reflect}"); } void Check() const { KALDI_ASSERT(num_channels >= 1); KALDI_ASSERT(horizontal_flip_prob >= 0 && horizontal_flip_prob <= 1); KALDI_ASSERT(horizontal_shift >= 0 && horizontal_shift <= 1); KALDI_ASSERT(vertical_shift >= 0 && vertical_shift <= 1); KALDI_ASSERT(rotation_degree >=0 && rotation_degree <= 180); KALDI_ASSERT(rotation_prob >=0 && rotation_prob <= 1); KALDI_ASSERT(fill_mode_string == "nearest" || fill_mode_string == "reflect"); } FillMode GetFillMode() const { FillMode fill_mode; if (fill_mode_string == "reflect") { fill_mode = kReflect; } else { if (fill_mode_string != "nearest") { KALDI_ERR << "Choices for --fill-mode are 'nearest' or 'reflect', got: " << fill_mode_string; } else { fill_mode = kNearest; } } return fill_mode; } }; /** This function applies a geometric transformation 'transform' to the image. Reference: Digital Image Processing book by Gonzalez and Woods. @param [in] transform The 3x3 geometric transformation matrix to apply. @param [in] num_channels Number of channels (i.e. colors) of the image @param [in,out] image The image matrix to be modified. image->NumRows() is the width (number of x values) in the image; image->NumCols() is the height times number of channels (channel varies the fastest). */ void ApplyAffineTransform(MatrixBase<BaseFloat> &transform, int32 num_channels, MatrixBase<BaseFloat> *image, FillMode fill_mode) { int32 num_rows = image->NumRows(), num_cols = image->NumCols(), height = num_cols / num_channels, width = num_rows; KALDI_ASSERT(num_cols % num_channels == 0); Matrix<BaseFloat> original_image(*image); for (int32 r = 0; r < width; r++) { for (int32 c = 0; c < height; c++) { // (r_old, c_old) is the coordinate of the pixel in the original image // while (r, c) is the coordinate in the new (transformed) image. BaseFloat r_old = transform(0, 0) * r + transform(0, 1) * c + transform(0, 2); BaseFloat c_old = transform(1, 0) * r + transform(1, 1) * c + transform(1, 2); // We are going to do bilinear interpolation between 4 closest points // to the point (r_old, c_old) of the original image. We have: // r1 <= r_old <= r2 // c1 <= c_old <= c2 int32 r1 = static_cast<int32>(floor(r_old)); int32 c1 = static_cast<int32>(floor(c_old)); int32 r2 = r1 + 1; int32 c2 = c1 + 1; // These weights determine how much each of the 4 points contributes // to the final interpolated value: BaseFloat weight_11 = (r2 - r_old) * (c2 - c_old), weight_12 = (r2 - r_old) * (c_old - c1), weight_21 = (r_old - r1) * (c2 - c_old), weight_22 = (r_old - r1) * (c_old - c1); // Handle edge conditions: if (fill_mode == kNearest) { if (r1 < 0) { r1 = 0; if (r2 < 0) r2 = 0; } if (r2 >= width) { r2 = width - 1; if (r1 >= width) r1 = width - 1; } if (c1 < 0) { c1 = 0; if (c2 < 0) c2 = 0; } if (c2 >= height) { c2 = height - 1; if (c1 >= height) c1 = height - 1; } } else { KALDI_ASSERT(fill_mode == kReflect); if (r1 < 0) { r1 = - r1; if (r2 < 0) r2 = - r2; } if (r2 >= width) { r2 = 2 * width - 2 - r2; if (r1 >= width) r1 = 2 * width - 2 - r1; } if (c1 < 0) { c1 = - c1; if (c2 < 0) c2 = -c2; } if (c2 >= height) { c2 = 2 * height - 2 - c2; if (c1 >= height) c1 = 2 * height - 2 - c1; } } for (int32 ch = 0; ch < num_channels; ch++) { // find the values at the 4 points BaseFloat p11 = original_image(r1, num_channels * c1 + ch), p12 = original_image(r1, num_channels * c2 + ch), p21 = original_image(r2, num_channels * c1 + ch), p22 = original_image(r2, num_channels * c2 + ch); (*image)(r, num_channels * c + ch) = weight_11 * p11 + weight_12 * p12 + weight_21 * p21 + weight_22 * p22; } } } } /** This function randomly modifies (perturbs) the image by applying different geometric transformations according to the options in 'config'. References: "Digital Image Processing book by Gonzalez and Woods" and "Keras: github.com/fchollet/keras/blob/master/keras/preprocessing/image.py" @param [in] config Configuration class that says how to perturb the image. @param [in,out] image The image matrix to be modified. image->NumRows() is the width (number of x values) in the image; image->NumCols() is the height times number of channels/colors (channel varies the fastest). */ void PerturbImage(const ImageAugmentationConfig &config, MatrixBase<BaseFloat> *image) { config.Check(); FillMode fill_mode = config.GetFillMode(); int32 image_width = image->NumRows(), num_channels = config.num_channels, image_height = image->NumCols() / num_channels; if (image->NumCols() % num_channels != 0) { KALDI_ERR << "Number of columns in image must divide the number " "of channels"; } // We do an affine transform which // handles flipping, translation, rotation, magnification, and shear. Matrix<BaseFloat> transform_mat(3, 3, kUndefined); transform_mat.SetUnit(); Matrix<BaseFloat> shift_mat(3, 3, kUndefined); shift_mat.SetUnit(); // translation (shift) mat: // [ 1 0 x_shift // 0 1 y_shift // 0 0 1 ] BaseFloat horizontal_shift = (2.0 * RandUniform() - 1.0) * config.horizontal_shift * image_width; BaseFloat vertical_shift = (2.0 * RandUniform() - 1.0) * config.vertical_shift * image_height; shift_mat(0, 2) = round(horizontal_shift); shift_mat(1, 2) = round(vertical_shift); // since we will center the image before applying the transform, // horizontal flipping is simply achieved by setting [0, 0] to -1: if (WithProb(config.horizontal_flip_prob)) shift_mat(0, 0) = -1.0; Matrix<BaseFloat> rotation_mat(3, 3, kUndefined); rotation_mat.SetUnit(); // rotation mat: // [ cos(theta) -sin(theta) 0 // sin(theta) cos(theta) 0 // 0 0 1 ] if (RandUniform() <= config.rotation_prob) { BaseFloat theta = (2 * config.rotation_degree * RandUniform() - config.rotation_degree) / 180.0 * M_PI; rotation_mat(0, 0) = cos(theta); rotation_mat(0, 1) = -sin(theta); rotation_mat(1, 0) = sin(theta); rotation_mat(1, 1) = cos(theta); } Matrix<BaseFloat> shear_mat(3, 3, kUndefined); shear_mat.SetUnit(); // shear mat: // [ 1 -sin(shear) 0 // 0 cos(shear) 0 // 0 0 1 ] Matrix<BaseFloat> zoom_mat(3, 3, kUndefined); zoom_mat.SetUnit(); // zoom mat: // [ x_zoom 0 0 // 0 y_zoom 0 // 0 0 1 ] // transform_mat = rotation_mat * shift_mat * shear_mat * zoom_mat: transform_mat.AddMatMat(1.0, shift_mat, kNoTrans, shear_mat, kNoTrans, 0.0); transform_mat.AddMatMatMat(1.0, rotation_mat, kNoTrans, transform_mat, kNoTrans, zoom_mat, kNoTrans, 0.0); if (transform_mat.IsUnit()) // nothing to do return; // we should now change the origin of transform to the center of // the image (necessary for flipping, zoom, shear, and rotation) // we do this by using two translations: one before the main transform // and one after. Matrix<BaseFloat> set_origin_mat(3, 3, kUndefined); set_origin_mat.SetUnit(); set_origin_mat(0, 2) = image_width / 2.0 - 0.5; set_origin_mat(1, 2) = image_height / 2.0 - 0.5; Matrix<BaseFloat> reset_origin_mat(3, 3, kUndefined); reset_origin_mat.SetUnit(); reset_origin_mat(0, 2) = -image_width / 2.0 + 0.5; reset_origin_mat(1, 2) = -image_height / 2.0 + 0.5; // transform_mat = set_origin_mat * transform_mat * reset_origin_mat transform_mat.AddMatMatMat(1.0, set_origin_mat, kNoTrans, transform_mat, kNoTrans, reset_origin_mat, kNoTrans, 0.0); ApplyAffineTransform(transform_mat, config.num_channels, image, fill_mode); } /** This function does image perturbation as directed by 'config' The example 'eg' is expected to contain a NnetIo member with the name 'input', representing an image. */ void PerturbImageInNnetExample( const ImageAugmentationConfig &config, NnetExample *eg) { int32 io_size = eg->io.size(); bool found_input = false; for (int32 i = 0; i < io_size; i++) { NnetIo &io = eg->io[i]; if (io.name == "input") { found_input = true; Matrix<BaseFloat> image; io.features.GetMatrix(&image); // note: 'GetMatrix' may uncompress if it was compressed. // We won't recompress, but this won't matter because this // program is intended to be used as part of a pipe, we // likely won't be dumping the perturbed data to disk. PerturbImage(config, &image); // modify the 'io' object. io.features = image; } } if (!found_input) KALDI_ERR << "Nnet example to perturb had no NnetIo object named 'input'"; } } // namespace nnet3 } // namespace kaldi int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Copy examples (single frames or fixed-size groups of frames) for neural " "network training, doing image augmentation inline (copies after possibly " "modifying of each image, randomly chosen according to configuration " "parameters). " "E.g.: " " nnet3-egs-augment-image --horizontal-flip-prob=0.5 --horizontal-shift=0.1\\ " " --vertical-shift=0.1 --srand=103 --num-channels=3 --fill-mode=nearest ark:- ark:- " " " "Requires that each eg contain a NnetIo object 'input', with successive " "'t' values representing different x offsets , and the feature dimension " "representing the y offset and the channel (color), with the channel " "varying the fastest. " "See also: nnet3-copy-egs "; int32 srand_seed = 0; ImageAugmentationConfig config; ParseOptions po(usage); po.Register("srand", &srand_seed, "Seed for the random number generator"); config.Register(&po); po.Read(argc, argv); srand(srand_seed); if (po.NumArgs() < 2) { po.PrintUsage(); exit(1); } std::string examples_rspecifier = po.GetArg(1), examples_wspecifier = po.GetArg(2); SequentialNnetExampleReader example_reader(examples_rspecifier); NnetExampleWriter example_writer(examples_wspecifier); int64 num_done = 0; for (; !example_reader.Done(); example_reader.Next(), num_done++) { std::string key = example_reader.Key(); NnetExample eg(example_reader.Value()); PerturbImageInNnetExample(config, &eg); example_writer.Write(key, eg); } KALDI_LOG << "Perturbed " << num_done << " neural-network training images."; return (num_done == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |