Blame view

src/nnet3bin/nnet3-init.cc 4.18 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  // nnet3bin/nnet3-init.cc
  
  // Copyright 2012-2015  Johns Hopkins University (author:  Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "nnet3/nnet-nnet.h"
  #include "hmm/transition-model.h"
  #include "tree/context-dep.h"
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      using namespace kaldi::nnet3;
      typedef kaldi::int32 int32;
  
      const char *usage =
          "Initialize nnet3 neural network from a config file; outputs 'raw' nnet
  "
          "without associated information such as transition model and priors.
  "
          "Search for examples in scripts in /egs/wsj/s5/steps/nnet3/
  "
          "Can also be used to add layers to existing model (provide existing model
  "
          "as 1st arg)
  "
          "
  "
          "Usage:  nnet3-init [options] [<existing-model-in>] <config-in> <raw-nnet-out>
  "
          "e.g.:
  "
          " nnet3-init nnet.config 0.raw
  "
          "or: nnet3-init 1.raw nnet.config 2.raw
  "
          "See also: nnet3-copy, nnet3-info
  ";
  
      bool binary_write = true;
      int32 srand_seed = 0;
  
      ParseOptions po(usage);
      po.Register("binary", &binary_write, "Write output in binary mode");
      po.Register("srand", &srand_seed, "Seed for random number generator");
  
      po.Read(argc, argv);
      srand(srand_seed);
  
      if (po.NumArgs() < 2 || po.NumArgs() > 3) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string raw_nnet_rxfilename = (po.NumArgs() == 3 ?
                                         po.GetArg(1) : std::string("")),
          config_rxfilename = po.GetArg(po.NumArgs() == 3 ? 2 : 1),
          raw_nnet_wxfilename = po.GetArg(po.NumArgs() == 3 ? 3 : 2);
  
      Nnet nnet;
      if (po.NumArgs() == 3) {
        ReadKaldiObject(raw_nnet_rxfilename, &nnet);
        KALDI_LOG << "Read raw neural net from "
                  << raw_nnet_rxfilename;
      }
  
      {
        bool binary;
        Input ki(config_rxfilename, &binary);
        KALDI_ASSERT(!binary && "Expect config file to contain text.");
        nnet.ReadConfig(ki.Stream());
      }
  
      WriteKaldiObject(nnet, raw_nnet_wxfilename, binary_write);
      KALDI_LOG << "Initialized raw neural net and wrote it to "
                << raw_nnet_wxfilename;
      return 0;
    } catch(const std::exception &e) {
      std::cerr << e.what() << '
  ';
      return -1;
    }
  }
  
  
  /*
  Test script:
  
  cat <<EOF | nnet3-init --binary=false - foo.raw
  component name=affine1 type=NaturalGradientAffineComponent input-dim=72 output-dim=59
  component name=relu1 type=RectifiedLinearComponent dim=59
  component name=final_affine type=NaturalGradientAffineComponent input-dim=59 output-dim=298
  component name=logsoftmax type=SoftmaxComponent dim=298
  input-node name=input dim=18
  component-node name=affine1_node component=affine1 input=Append(Offset(input, -4), Offset(input, -3), Offset(input, -2), Offset(input, 0))
  component-node name=nonlin1 component=relu1 input=affine1_node
  component-node name=final_affine component=final_affine input=nonlin1
  component-node name=output_nonlin component=logsoftmax input=final_affine
  output-node name=output input=output_nonlin
  EOF
  
  cat <<EOF | nnet3-init --binary=false foo.raw -  bar.raw
  component name=affine2 type=NaturalGradientAffineComponent input-dim=59 output-dim=59
  component name=relu2 type=RectifiedLinearComponent dim=59
  component name=final_affine type=NaturalGradientAffineComponent input-dim=59 output-dim=298
  component-node name=affine2 component=affine2 input=nonlin1
  component-node name=relu2 component=relu2 input=affine2
  component-node name=final_affine component=final_affine input=relu2
  EOF
  
  rm foo.raw bar.raw
  
   */