Blame view
src/nnet3bin/nnet3-init.cc
4.18 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
// nnet3bin/nnet3-init.cc // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet3/nnet-nnet.h" #include "hmm/transition-model.h" #include "tree/context-dep.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; const char *usage = "Initialize nnet3 neural network from a config file; outputs 'raw' nnet " "without associated information such as transition model and priors. " "Search for examples in scripts in /egs/wsj/s5/steps/nnet3/ " "Can also be used to add layers to existing model (provide existing model " "as 1st arg) " " " "Usage: nnet3-init [options] [<existing-model-in>] <config-in> <raw-nnet-out> " "e.g.: " " nnet3-init nnet.config 0.raw " "or: nnet3-init 1.raw nnet.config 2.raw " "See also: nnet3-copy, nnet3-info "; bool binary_write = true; int32 srand_seed = 0; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("srand", &srand_seed, "Seed for random number generator"); po.Read(argc, argv); srand(srand_seed); if (po.NumArgs() < 2 || po.NumArgs() > 3) { po.PrintUsage(); exit(1); } std::string raw_nnet_rxfilename = (po.NumArgs() == 3 ? po.GetArg(1) : std::string("")), config_rxfilename = po.GetArg(po.NumArgs() == 3 ? 2 : 1), raw_nnet_wxfilename = po.GetArg(po.NumArgs() == 3 ? 3 : 2); Nnet nnet; if (po.NumArgs() == 3) { ReadKaldiObject(raw_nnet_rxfilename, &nnet); KALDI_LOG << "Read raw neural net from " << raw_nnet_rxfilename; } { bool binary; Input ki(config_rxfilename, &binary); KALDI_ASSERT(!binary && "Expect config file to contain text."); nnet.ReadConfig(ki.Stream()); } WriteKaldiObject(nnet, raw_nnet_wxfilename, binary_write); KALDI_LOG << "Initialized raw neural net and wrote it to " << raw_nnet_wxfilename; return 0; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } /* Test script: cat <<EOF | nnet3-init --binary=false - foo.raw component name=affine1 type=NaturalGradientAffineComponent input-dim=72 output-dim=59 component name=relu1 type=RectifiedLinearComponent dim=59 component name=final_affine type=NaturalGradientAffineComponent input-dim=59 output-dim=298 component name=logsoftmax type=SoftmaxComponent dim=298 input-node name=input dim=18 component-node name=affine1_node component=affine1 input=Append(Offset(input, -4), Offset(input, -3), Offset(input, -2), Offset(input, 0)) component-node name=nonlin1 component=relu1 input=affine1_node component-node name=final_affine component=final_affine input=nonlin1 component-node name=output_nonlin component=logsoftmax input=final_affine output-node name=output input=output_nonlin EOF cat <<EOF | nnet3-init --binary=false foo.raw - bar.raw component name=affine2 type=NaturalGradientAffineComponent input-dim=59 output-dim=59 component name=relu2 type=RectifiedLinearComponent dim=59 component name=final_affine type=NaturalGradientAffineComponent input-dim=59 output-dim=298 component-node name=affine2 component=affine2 input=nonlin1 component-node name=relu2 component=relu2 input=affine2 component-node name=final_affine component=final_affine input=relu2 EOF rm foo.raw bar.raw */ |