Blame view
src/nnet3bin/nnet3-shuffle-egs.cc
3.99 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
// nnet3bin/nnet3-shuffle-egs.cc // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // 2014 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet3/nnet-example.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Copy examples (typically single frames or small groups of frames) for " "neural network training, from the input to output, but randomly shuffle the order. " "This program will keep all of the examples in memory at once, unless you " "use the --buffer-size option " " " "Usage: nnet3-shuffle-egs [options] <egs-rspecifier> <egs-wspecifier> " " " "nnet3-shuffle-egs --srand=1 ark:train.egs ark:shuffled.egs "; int32 srand_seed = 0; int32 buffer_size = 0; ParseOptions po(usage); po.Register("srand", &srand_seed, "Seed for random number generator "); po.Register("buffer-size", &buffer_size, "If >0, size of a buffer we use " "to do limited-memory partial randomization. Otherwise, do " "full randomization."); po.Read(argc, argv); srand(srand_seed); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string examples_rspecifier = po.GetArg(1), examples_wspecifier = po.GetArg(2); int64 num_done = 0; std::vector<std::pair<std::string, NnetExample*> > egs; SequentialNnetExampleReader example_reader(examples_rspecifier); NnetExampleWriter example_writer(examples_wspecifier); if (buffer_size == 0) { // Do full randomization // Putting in an extra level of indirection here to avoid excessive // computation and memory demands when we have to resize the vector. for (; !example_reader.Done(); example_reader.Next()) egs.push_back(std::make_pair(example_reader.Key(), new NnetExample(example_reader.Value()))); std::random_shuffle(egs.begin(), egs.end()); } else { KALDI_ASSERT(buffer_size > 0); egs.resize(buffer_size, std::pair<std::string, NnetExample*>("", NULL)); for (; !example_reader.Done(); example_reader.Next()) { int32 index = RandInt(0, buffer_size - 1); if (egs[index].second == NULL) { egs[index] = std::make_pair(example_reader.Key(), new NnetExample(example_reader.Value())); } else { example_writer.Write(egs[index].first, *(egs[index].second)); egs[index].first = example_reader.Key(); *(egs[index].second) = example_reader.Value(); num_done++; } } } for (size_t i = 0; i < egs.size(); i++) { if (egs[i].second != NULL) { example_writer.Write(egs[i].first, *(egs[i].second)); delete egs[i].second; num_done++; } } KALDI_LOG << "Shuffled order of " << num_done << " neural-network training examples " << (buffer_size ? "using a buffer (partial randomization)" : ""); return (num_done == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |