Blame view

src/nnetbin/nnet-train-mmi-sequential.cc 16.9 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
  // nnetbin/nnet-train-mmi-sequential.cc
  
  // Copyright 2012-2016  Brno University of Technology (author: Karel Vesely)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <iomanip>
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "tree/context-dep.h"
  #include "hmm/transition-model.h"
  #include "fstext/fstext-lib.h"
  #include "decoder/faster-decoder.h"
  #include "decoder/decodable-matrix.h"
  #include "lat/kaldi-lattice.h"
  #include "lat/lattice-functions.h"
  
  #include "nnet/nnet-trnopts.h"
  #include "nnet/nnet-component.h"
  #include "nnet/nnet-activation.h"
  #include "nnet/nnet-nnet.h"
  #include "nnet/nnet-pdf-prior.h"
  #include "nnet/nnet-utils.h"
  #include "base/timer.h"
  #include "cudamatrix/cu-device.h"
  
  
  namespace kaldi {
  namespace nnet1 {
  
  void LatticeAcousticRescore(const Matrix<BaseFloat> &log_like,
                              const TransitionModel &trans_model,
                              const std::vector<int32> &state_times,
                              Lattice *lat) {
    kaldi::uint64 props = lat->Properties(fst::kFstProperties, false);
    if (!(props & fst::kTopSorted))
      KALDI_ERR << "Input lattice must be topologically sorted.";
  
    KALDI_ASSERT(!state_times.empty());
    std::vector<std::vector<int32> > time_to_state(log_like.NumRows());
    for (size_t i = 0; i < state_times.size(); i++) {
      KALDI_ASSERT(state_times[i] >= 0);
      if (state_times[i] < log_like.NumRows())  // end state may be past this..
        time_to_state[state_times[i]].push_back(i);
      else
        KALDI_ASSERT(state_times[i] == log_like.NumRows()
                     && "There appears to be lattice/feature mismatch.");
    }
  
    for (int32 t = 0; t < log_like.NumRows(); t++) {
      for (size_t i = 0; i < time_to_state[t].size(); i++) {
        int32 state = time_to_state[t][i];
        for (fst::MutableArcIterator<Lattice> aiter(lat, state); !aiter.Done();
             aiter.Next()) {
          LatticeArc arc = aiter.Value();
          int32 trans_id = arc.ilabel;
          if (trans_id != 0) {  // Non-epsilon input label on arc
            int32 pdf_id = trans_model.TransitionIdToPdf(trans_id);
            arc.weight.SetValue2(-log_like(t, pdf_id) + arc.weight.Value2());
            aiter.SetValue(arc);
          }
        }
      }
    }
  }
  
  }  // namespace nnet1
  }  // namespace kaldi
  
  
  int main(int argc, char *argv[]) {
    using namespace kaldi;
    using namespace kaldi::nnet1;
    typedef kaldi::int32 int32;
    try {
      const char *usage =
        "Perform one iteration of MMI training using SGD with per-utterance"
        "updates
  "
  
        "Usage:  nnet-train-mmi-sequential [options] "
        "<model-in> <transition-model-in> <feature-rspecifier> "
        "<den-lat-rspecifier> <ali-rspecifier> [<model-out>]
  "
  
        "e.g.: nnet-train-mmi-sequential nnet.init trans.mdl scp:feats.scp "
        "scp:denlats.scp ark:ali.ark nnet.iter1
  ";
  
      ParseOptions po(usage);
  
      NnetTrainOptions trn_opts;
      trn_opts.learn_rate = 0.00001;  // changing default,
      trn_opts.Register(&po);
  
      bool binary = true;
      po.Register("binary", &binary, "Write output in binary mode");
  
      std::string feature_transform;
      po.Register("feature-transform", &feature_transform,
          "Feature transform in 'nnet1' format");
  
      PdfPriorOptions prior_opts;
      prior_opts.Register(&po);
  
      BaseFloat acoustic_scale = 1.0,
          lm_scale = 1.0,
          old_acoustic_scale = 0.0;
  
      po.Register("acoustic-scale", &acoustic_scale,
          "Scaling factor for acoustic likelihoods");
  
      po.Register("lm-scale", &lm_scale,
          "Scaling factor for \"graph costs\" (including LM costs)");
  
      po.Register("old-acoustic-scale", &old_acoustic_scale,
          "Add in the scores in the input lattices with this scale, "
          "rather than discarding them.");
  
      kaldi::int32 max_frames = 6000;
      po.Register("max-frames", &max_frames,
          "Maximum number of frames an utterance can have (skipped if longer)");
  
      bool drop_frames = true;
      po.Register("drop-frames", &drop_frames,
          "Drop frames, where is zero den-posterior under numerator path "
          "(ie. path not in lattice)");
  
      std::string use_gpu="yes";
      po.Register("use-gpu", &use_gpu,
          "yes|no|optional, only has effect if compiled with CUDA");
  
      po.Read(argc, argv);
  
      if (po.NumArgs() != 6) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string model_filename = po.GetArg(1),
          transition_model_filename = po.GetArg(2),
          feature_rspecifier = po.GetArg(3),
          den_lat_rspecifier = po.GetArg(4),
          num_ali_rspecifier = po.GetArg(5),
          target_model_filename = po.GetArg(6);
  
      using namespace kaldi;
      using namespace kaldi::nnet1;
      typedef kaldi::int32 int32;
  
  #if HAVE_CUDA == 1
      CuDevice::Instantiate().SelectGpuId(use_gpu);
  #endif
  
      Nnet nnet_transf;
      if (feature_transform != "") {
        nnet_transf.Read(feature_transform);
      }
  
      Nnet nnet;
      nnet.Read(model_filename);
      // we will use pre-softmax activations, removing softmax,
      // - pre-softmax activations are equivalent to 'log-posterior + C_frame',
      // - all paths crossing a frame share same 'C_frame',
      // - with GMM, we also have the unnormalized acoustic likelihoods,
      if (nnet.GetLastComponent().GetType() ==
          kaldi::nnet1::Component::kSoftmax) {
        KALDI_LOG << "Removing softmax from the nnet " << model_filename;
        nnet.RemoveLastComponent();
      } else {
        KALDI_LOG << "The nnet was without softmax. "
                  << "The last component in " << model_filename << " was "
                  << Component::TypeToMarker(nnet.GetLastComponent().GetType());
      }
      nnet.SetTrainOptions(trn_opts);
  
      // Read the class-frame-counts, compute priors,
      PdfPrior log_prior(prior_opts);
  
      // Read transition model,
      TransitionModel trans_model;
      ReadKaldiObject(transition_model_filename, &trans_model);
  
      SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
      RandomAccessLatticeReader den_lat_reader(den_lat_rspecifier);
      RandomAccessInt32VectorReader num_ali_reader(num_ali_rspecifier);
  
      CuMatrix<BaseFloat> feats_transf, nnet_out, nnet_diff;
      Matrix<BaseFloat> nnet_out_h, nnet_diff_h;
  
      if (drop_frames) {
        KALDI_LOG << "--drop-frames=true :"
                     " we will zero gradient for frames with total den/num mismatch."
                     " The mismatch is likely to be caused by missing correct path "
                     " from den-lattice due wrong annotation or search error."
                     " Leaving such frames out stabilizes the training.";
      }
  
      Timer time;
      double time_now = 0;
      KALDI_LOG << "TRAINING STARTED";
  
      int32 num_done = 0, num_no_num_ali = 0, num_no_den_lat = 0,
            num_other_error = 0, num_frm_drop = 0;
  
      kaldi::int64 total_frames = 0;
      double lat_like;  // total likelihood of the lattice
      double lat_ac_like;  // acoustic likelihood weighted by posterior.
      double total_mmi_obj = 0.0, mmi_obj = 0.0;
      double total_post_on_ali = 0.0, post_on_ali = 0.0;
  
      // main loop over utterances,
      for ( ; !feature_reader.Done(); feature_reader.Next()) {
        std::string utt = feature_reader.Key();
        if (!den_lat_reader.HasKey(utt)) {
          KALDI_WARN << "Missing lattice of " << utt;
          num_no_den_lat++;
          continue;
        }
        if (!num_ali_reader.HasKey(utt)) {
          KALDI_WARN << "Missing alignment of " << utt;
          num_no_num_ali++;
          continue;
        }
  
        // 1) get the features, numerator alignment,
        const Matrix<BaseFloat> &mat = feature_reader.Value();
        const std::vector<int32> &num_ali = num_ali_reader.Value(utt);
        // check duration of numerator alignments
        if (static_cast<int32>(num_ali.size()) != mat.NumRows()) {
          KALDI_WARN << "Duration mismatch!"
                     << " alignment " << num_ali.size()
                     << " features " << mat.NumRows();
          num_other_error++;
          continue;
        }
        if (mat.NumRows() > max_frames) {
          KALDI_WARN << "Skipping " << utt
            << " that has " << mat.NumRows() << " frames,"
            << " it is longer than '--max-frames'" << max_frames;
          num_other_error++;
          continue;
        }
  
        // 2) get the denominator-lattice, preprocess
        Lattice den_lat = den_lat_reader.Value(utt);
        if (den_lat.Start() == -1) {
          KALDI_WARN << "Empty lattice of " << utt << ", skipping.";
          num_other_error++;
          continue;
        }
        if (old_acoustic_scale != 1.0) {
          fst::ScaleLattice(fst::AcousticLatticeScale(old_acoustic_scale),
                            &den_lat);
        }
        // optional sort it topologically
        kaldi::uint64 props = den_lat.Properties(fst::kFstProperties, false);
        if (!(props & fst::kTopSorted)) {
          if (fst::TopSort(&den_lat) == false) {
            KALDI_ERR << "Cycles detected in lattice.";
          }
        }
        // get the lattice length and times of states,
        std::vector<int32> state_times;
        int32 max_time = kaldi::LatticeStateTimes(den_lat, &state_times);
        // check duration of den. lattice,
        if (max_time != mat.NumRows()) {
          KALDI_WARN << "Duration mismatch!"
            << " denominator lattice " << max_time
            << " features " << mat.NumRows() << ","
            << " skipping " << utt;
          num_other_error++;
          continue;
        }
  
        // get dims,
        int32 num_frames = mat.NumRows(),
              num_pdfs = nnet.OutputDim();
  
        // 3) get the pre-softmax outputs from NN,
        // apply transform,
        nnet_transf.Feedforward(CuMatrix<BaseFloat>(mat), &feats_transf);
        // propagate through the nnet (we know it's w/o softmax),
        nnet.Propagate(feats_transf, &nnet_out);
        // subtract the log_prior,
        if (prior_opts.class_frame_counts != "") {
          log_prior.SubtractOnLogpost(&nnet_out);
        }
        // transfer it back to the host,
        nnet_out_h = Matrix<BaseFloat>(nnet_out);
        // release the buffers we don't need anymore,
        feats_transf.Resize(0, 0);
        nnet_out.Resize(0, 0);
  
        // 4) rescore the latice,
        LatticeAcousticRescore(nnet_out_h, trans_model, state_times, &den_lat);
        if (acoustic_scale != 1.0 || lm_scale != 1.0)
          fst::ScaleLattice(fst::LatticeScale(lm_scale, acoustic_scale), &den_lat);
  
        // 5) get the posteriors,
        kaldi::Posterior post;
        lat_like = kaldi::LatticeForwardBackward(den_lat, &post, &lat_ac_like);
  
        // 6) convert the Posterior to a matrix,
        PosteriorToPdfMatrix(post, trans_model, &nnet_diff_h);
  
        // 7) Calculate the MMI-objective function,
        // Calculate the likelihood of correct path from acoustic score,
        // the denominator likelihood is the total likelihood of the lattice.
        double path_ac_like = 0.0;
        for (int32 t = 0; t < num_frames; t++) {
          int32 pdf = trans_model.TransitionIdToPdf(num_ali[t]);
          path_ac_like += nnet_out_h(t, pdf);
        }
        path_ac_like *= acoustic_scale;
        mmi_obj = path_ac_like - lat_like;
        //
        // Note: numerator likelihood does not include graph score,
        // while denominator likelihood contains graph scores.
        // The result is offset at the MMI-objective.
        // However the offset is constant for given alignment,
        // so it does not change accross epochs.
  
        // Sum the den-posteriors under the correct path,
        post_on_ali = 0.0;
        for (int32 t = 0; t < num_frames; t++) {
          int32 pdf = trans_model.TransitionIdToPdf(num_ali[t]);
          double posterior = nnet_diff_h(t, pdf);
          post_on_ali += posterior;
        }
  
        // Report,
        KALDI_VLOG(1) << "Lattice #" << num_done + 1 << " processed"
          << " (" << utt << "): found " << den_lat.NumStates()
          << " states and " << fst::NumArcs(den_lat) << " arcs.";
  
        KALDI_VLOG(1) << "Utterance " << utt << ": Average MMI obj. value = "
          << (mmi_obj/num_frames) << " over " << num_frames << " frames."
          << " (Avg. den-posterior on ali " << post_on_ali / num_frames << ")";
  
  
        // 7a) Search for the frames with num/den mismatch,
        int32 frm_drop = 0;
        std::vector<int32> frm_drop_vec;
        for (int32 t = 0; t < num_frames; t++) {
          int32 pdf = trans_model.TransitionIdToPdf(num_ali[t]);
          double posterior = nnet_diff_h(t, pdf);
          if (posterior < 1e-20) {
            frm_drop++;
            frm_drop_vec.push_back(t);
          }
        }
  
        // 8) subtract the pdf-Viterbi-path,
        for (int32 t = 0; t < nnet_diff_h.NumRows(); t++) {
          int32 pdf = trans_model.TransitionIdToPdf(num_ali[t]);
          nnet_diff_h(t, pdf) -= 1.0;
        }
  
        // 9) Drop mismatched frames from the training by zeroing the derivative,
        if (drop_frames) {
          for (int32 i = 0; i < frm_drop_vec.size(); i++) {
            nnet_diff_h.Row(frm_drop_vec[i]).Set(0.0);
          }
          num_frm_drop += frm_drop;
        }
        // Report the frame dropping
        if (frm_drop > 0) {
          std::stringstream ss;
          ss << (drop_frames?"Dropped":"[dropping disabled] Would drop")
             << " frames in " << utt << " " << frm_drop << "/" << num_frames
             << ",";
          // get frame intervals from vec frm_drop_vec,
          ss << " intervals :";
          // search for streaks of consecutive numbers,
          int32 beg_streak = frm_drop_vec[0];
          int32 len_streak = 0;
          int32 i;
          for (i = 0; i < frm_drop_vec.size(); i++, len_streak++) {
            if (beg_streak + len_streak != frm_drop_vec[i]) {
              ss << " " << beg_streak << ".." << frm_drop_vec[i-1] << "frm";
              beg_streak = frm_drop_vec[i];
              len_streak = 0;
            }
          }
          ss << " " << beg_streak << ".." << frm_drop_vec[i-1] << "frm";
          // print,
          KALDI_WARN << ss.str();
        }
  
        // 10) backpropagate through the nnet, update,
        nnet_diff.Resize(num_frames, num_pdfs, kUndefined);
        nnet_diff.CopyFromMat(nnet_diff_h);
        nnet.Backpropagate(nnet_diff, NULL);
        // relase the buffer, we don't need anymore,
        nnet_diff.Resize(0, 0);
  
        // increase time counter
        total_mmi_obj += mmi_obj;
        total_post_on_ali += post_on_ali;
        total_frames += num_frames;
        num_done++;
  
        if (num_done % 100 == 0) {
          time_now = time.Elapsed();
          KALDI_VLOG(1) << "After " << num_done << " utterances: "
            << "time elapsed = " << time_now / 60 << " min; "
            << "processed " << total_frames / time_now << " frames per sec.";
  #if HAVE_CUDA == 1
          // check that GPU computes accurately,
          CuDevice::Instantiate().CheckGpuHealth();
  #endif
        }
  
        // GRADIENT LOGGING
        // First utterance,
        if (num_done == 1) {
          KALDI_VLOG(1) << nnet.InfoPropagate();
          KALDI_VLOG(1) << nnet.InfoBackPropagate();
          KALDI_VLOG(1) << nnet.InfoGradient();
        }
        // Every 1000 utterances (--verbose=2),
        if (GetVerboseLevel() >= 2) {
          if (num_done % 1000 == 0) {
            KALDI_VLOG(2) << nnet.InfoPropagate();
            KALDI_VLOG(2) << nnet.InfoBackPropagate();
            KALDI_VLOG(2) << nnet.InfoGradient();
          }
        }
      }  // main loop over utterances,
  
      // After last utterance,
      KALDI_VLOG(1) << nnet.InfoPropagate();
      KALDI_VLOG(1) << nnet.InfoBackPropagate();
      KALDI_VLOG(1) << nnet.InfoGradient();
  
      // Add the softmax layer back before writing,
      KALDI_LOG << "Appending the softmax " << target_model_filename;
      nnet.AppendComponentPointer(new Softmax(nnet.OutputDim(), nnet.OutputDim()));
      // Store the nnet,
      nnet.Write(target_model_filename, binary);
  
      time_now = time.Elapsed();
      KALDI_LOG << "TRAINING FINISHED; "
                << "Time taken = " << time_now/60 << " min; processed "
                << (total_frames/time_now) << " frames per second.";
  
      KALDI_LOG << "Done " << num_done << " files, "
                << num_no_num_ali << " with no numerator alignments, "
                << num_no_den_lat << " with no denominator lattices, "
                << num_other_error << " with other errors.";
  
      KALDI_LOG << "Overall MMI-objective/frame is "
                << std::setprecision(8) << total_mmi_obj / total_frames
                << " over " << total_frames << " frames,"
                << " (average den-posterior on ali "
                << total_post_on_ali / total_frames << ","
                << " dropped " << num_frm_drop
                << " frames with num/den mismatch)";
  
  #if HAVE_CUDA == 1
      CuDevice::Instantiate().PrintProfile();
  #endif
  
      return 0;
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }