Blame view
src/nnetbin/nnet-train-mpe-sequential.cc
14.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
// nnetbin/nnet-train-mpe-sequential.cc // Copyright 2011-2016 Brno University of Technology (author: Karel Vesely); // Arnab Ghoshal // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "tree/context-dep.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "decoder/faster-decoder.h" #include "decoder/decodable-matrix.h" #include "lat/kaldi-lattice.h" #include "lat/lattice-functions.h" #include "nnet/nnet-trnopts.h" #include "nnet/nnet-component.h" #include "nnet/nnet-activation.h" #include "nnet/nnet-nnet.h" #include "nnet/nnet-pdf-prior.h" #include "nnet/nnet-utils.h" #include "base/timer.h" #include "cudamatrix/cu-device.h" namespace kaldi { namespace nnet1 { void LatticeAcousticRescore(const Matrix<BaseFloat> &log_like, const TransitionModel &trans_model, const std::vector<int32> &state_times, Lattice *lat) { kaldi::uint64 props = lat->Properties(fst::kFstProperties, false); if (!(props & fst::kTopSorted)) KALDI_ERR << "Input lattice must be topologically sorted."; KALDI_ASSERT(!state_times.empty()); std::vector<std::vector<int32> > time_to_state(log_like.NumRows()); for (size_t i = 0; i < state_times.size(); i++) { KALDI_ASSERT(state_times[i] >= 0); if (state_times[i] < log_like.NumRows()) // end state may be past this.. time_to_state[state_times[i]].push_back(i); else KALDI_ASSERT(state_times[i] == log_like.NumRows() && "There appears to be lattice/feature mismatch."); } for (int32 t = 0; t < log_like.NumRows(); t++) { for (size_t i = 0; i < time_to_state[t].size(); i++) { int32 state = time_to_state[t][i]; for (fst::MutableArcIterator<Lattice> aiter(lat, state); !aiter.Done(); aiter.Next()) { LatticeArc arc = aiter.Value(); int32 trans_id = arc.ilabel; if (trans_id != 0) { // Non-epsilon input label on arc int32 pdf_id = trans_model.TransitionIdToPdf(trans_id); arc.weight.SetValue2(-log_like(t, pdf_id) + arc.weight.Value2()); aiter.SetValue(arc); } } } } } } // namespace nnet1 } // namespace kaldi int main(int argc, char *argv[]) { using namespace kaldi; using namespace kaldi::nnet1; typedef kaldi::int32 int32; try { const char *usage = "Perform one iteration of MPE/sMBR training using SGD with per-utterance" "updates. " "Usage: nnet-train-mpe-sequential [options] " "<model-in> <transition-model-in> <feature-rspecifier> " "<den-lat-rspecifier> <ali-rspecifier> [<model-out>] " "e.g.: nnet-train-mpe-sequential nnet.init trans.mdl scp:feats.scp " "scp:denlats.scp ark:ali.ark nnet.iter1 "; ParseOptions po(usage); NnetTrainOptions trn_opts; trn_opts.learn_rate = 0.00001; // changing default, trn_opts.Register(&po); bool binary = true; po.Register("binary", &binary, "Write output in binary mode"); std::string feature_transform; po.Register("feature-transform", &feature_transform, "Feature transform in 'nnet1' format"); std::string silence_phones_str; po.Register("silence-phones", &silence_phones_str, "Colon-separated list of integer id's of silence phones, e.g. 46:47"); PdfPriorOptions prior_opts; prior_opts.Register(&po); BaseFloat acoustic_scale = 1.0, lm_scale = 1.0, old_acoustic_scale = 0.0; po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("lm-scale", &lm_scale, "Scaling factor for \"graph costs\" (including LM costs)"); po.Register("old-acoustic-scale", &old_acoustic_scale, "Add in the scores in the input lattices with this scale, rather " "than discarding them."); bool one_silence_class = false; po.Register("one-silence-class", &one_silence_class, "If true, the newer behavior reduces insertions."); kaldi::int32 max_frames = 6000; po.Register("max-frames", &max_frames, "Maximum number of frames an utterance can have (skipped if longer)"); bool do_smbr = false; po.Register("do-smbr", &do_smbr, "Use state-level accuracies instead of phone accuracies."); std::string use_gpu="yes"; po.Register("use-gpu", &use_gpu, "yes|no|optional, only has effect if compiled with CUDA"); po.Read(argc, argv); if (po.NumArgs() != 6) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), transition_model_filename = po.GetArg(2), feature_rspecifier = po.GetArg(3), den_lat_rspecifier = po.GetArg(4), ref_ali_rspecifier = po.GetArg(5), target_model_filename = po.GetArg(6); std::vector<int32> silence_phones; if (!kaldi::SplitStringToIntegers(silence_phones_str, ":", false, &silence_phones)) { KALDI_ERR << "Invalid silence-phones string " << silence_phones_str; } kaldi::SortAndUniq(&silence_phones); if (silence_phones.empty()) { KALDI_LOG << "No silence phones specified."; } #if HAVE_CUDA == 1 CuDevice::Instantiate().SelectGpuId(use_gpu); #endif Nnet nnet_transf; if (feature_transform != "") { nnet_transf.Read(feature_transform); } Nnet nnet; nnet.Read(model_filename); // we will use pre-softmax activations, removing softmax, // - pre-softmax activations are equivalent to 'log-posterior + C_frame', // - all paths crossing a frame share same 'C_frame', // - with GMM, we also have the unnormalized acoustic likelihoods, if (nnet.GetLastComponent().GetType() == kaldi::nnet1::Component::kSoftmax) { KALDI_LOG << "Removing softmax from the nnet " << model_filename; nnet.RemoveLastComponent(); } else { KALDI_LOG << "The nnet was without softmax. " << "The last component in " << model_filename << " was " << Component::TypeToMarker(nnet.GetLastComponent().GetType()); } nnet.SetTrainOptions(trn_opts); // Read the class-frame-counts, compute priors, PdfPrior log_prior(prior_opts); // Read transition model, TransitionModel trans_model; ReadKaldiObject(transition_model_filename, &trans_model); SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessLatticeReader den_lat_reader(den_lat_rspecifier); RandomAccessInt32VectorReader ref_ali_reader(ref_ali_rspecifier); CuMatrix<BaseFloat> feats_transf, nnet_out, nnet_diff; Matrix<BaseFloat> nnet_out_h; Timer time; double time_now = 0; KALDI_LOG << "TRAINING STARTED"; int32 num_done = 0, num_no_ref_ali = 0, num_no_den_lat = 0, num_other_error = 0; kaldi::int64 total_frames = 0; double total_frame_acc = 0.0, utt_frame_acc; // main loop over utterances, for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); if (!den_lat_reader.HasKey(utt)) { KALDI_WARN << "Missing lattice for " << utt; num_no_den_lat++; continue; } if (!ref_ali_reader.HasKey(utt)) { KALDI_WARN << "Missing alignment for " << utt; num_no_ref_ali++; continue; } // 1) get the features, numerator alignment, const Matrix<BaseFloat> &mat = feature_reader.Value(); const std::vector<int32> &ref_ali = ref_ali_reader.Value(utt); // check duration of numerator alignments, if (static_cast<MatrixIndexT>(ref_ali.size()) != mat.NumRows()) { KALDI_WARN << "Duration mismatch!" << " alignment " << ref_ali.size() << " features " << mat.NumRows(); num_other_error++; continue; } if (mat.NumRows() > max_frames) { KALDI_WARN << "Skipping " << utt << " that has " << mat.NumRows() << " frames," << " it is longer than '--max-frames'" << max_frames; num_other_error++; continue; } // 2) get the denominator lattice, preprocess Lattice den_lat = den_lat_reader.Value(utt); if (den_lat.Start() == -1) { KALDI_WARN << "Empty lattice of " << utt << ", skipping."; num_other_error++; continue; } if (old_acoustic_scale != 1.0) { fst::ScaleLattice(fst::AcousticLatticeScale(old_acoustic_scale), &den_lat); } // optional sort it topologically kaldi::uint64 props = den_lat.Properties(fst::kFstProperties, false); if (!(props & fst::kTopSorted)) { if (fst::TopSort(&den_lat) == false) { KALDI_ERR << "Cycles detected in lattice."; } } // get the lattice length and times of states std::vector<int32> state_times; int32 max_time = kaldi::LatticeStateTimes(den_lat, &state_times); // check for temporal length of denominator lattices if (max_time != mat.NumRows()) { KALDI_WARN << "Duration mismatch!" << " denominator lattice " << max_time << " features " << mat.NumRows() << "," << " skipping " << utt; num_other_error++; continue; } // get dims, int32 num_frames = mat.NumRows(); // 3) get the pre-softmax outputs from NN, // apply transform, nnet_transf.Feedforward(CuMatrix<BaseFloat>(mat), &feats_transf); // propagate through the nnet (we know it's w/o softmax), nnet.Propagate(feats_transf, &nnet_out); // subtract the log_prior, if (prior_opts.class_frame_counts != "") { log_prior.SubtractOnLogpost(&nnet_out); } // transfer it back to the host, nnet_out_h = Matrix<BaseFloat>(nnet_out); // release the buffers we don't need anymore feats_transf.Resize(0, 0); nnet_out.Resize(0, 0); // 4) rescore the latice LatticeAcousticRescore(nnet_out_h, trans_model, state_times, &den_lat); if (acoustic_scale != 1.0 || lm_scale != 1.0) fst::ScaleLattice(fst::LatticeScale(lm_scale, acoustic_scale), &den_lat); kaldi::Posterior post; if (do_smbr) { // use state-level accuracies, i.e. sMBR estimation, utt_frame_acc = LatticeForwardBackwardMpeVariants( trans_model, silence_phones, den_lat, ref_ali, "smbr", one_silence_class, &post); } else { // use phone-level accuracies, i.e. MPFE (minimum phone frame error), utt_frame_acc = LatticeForwardBackwardMpeVariants( trans_model, silence_phones, den_lat, ref_ali, "mpfe", one_silence_class, &post); } // 6) convert the Posterior to a matrix, PosteriorToPdfMatrix(post, trans_model, &nnet_diff); nnet_diff.Scale(-1.0); // need to flip the sign of derivative, KALDI_VLOG(1) << "Lattice #" << num_done + 1 << " processed" << " (" << utt << "): found " << den_lat.NumStates() << " states and " << fst::NumArcs(den_lat) << " arcs."; KALDI_VLOG(1) << "Utterance " << utt << ": Average frame accuracy = " << (utt_frame_acc/num_frames) << " over " << num_frames << " frames," << " diff-range(" << nnet_diff.Min() << "," << nnet_diff.Max() << ")"; // 7) backpropagate through the nnet, update, nnet.Backpropagate(nnet_diff, NULL); nnet_diff.Resize(0, 0); // release GPU memory, // increase time counter total_frame_acc += utt_frame_acc; total_frames += num_frames; num_done++; if (num_done % 100 == 0) { time_now = time.Elapsed(); KALDI_VLOG(1) << "After " << num_done << " utterances: " << "time elapsed = " << time_now / 60 << " min; " << "processed " << total_frames / time_now << " frames per sec."; #if HAVE_CUDA == 1 // check that GPU computes accurately, CuDevice::Instantiate().CheckGpuHealth(); #endif } // GRADIENT LOGGING // First utterance, if (num_done == 1) { KALDI_VLOG(1) << nnet.InfoPropagate(); KALDI_VLOG(1) << nnet.InfoBackPropagate(); KALDI_VLOG(1) << nnet.InfoGradient(); } // Every 1000 utterances (--verbose=2), if (GetVerboseLevel() >= 2) { if (num_done % 1000 == 0) { KALDI_VLOG(2) << nnet.InfoPropagate(); KALDI_VLOG(2) << nnet.InfoBackPropagate(); KALDI_VLOG(2) << nnet.InfoGradient(); } } } // main loop over utterances, // After last utterance, KALDI_VLOG(1) << nnet.InfoPropagate(); KALDI_VLOG(1) << nnet.InfoBackPropagate(); KALDI_VLOG(1) << nnet.InfoGradient(); // Add the softmax layer back before writing, KALDI_LOG << "Appending the softmax " << target_model_filename; nnet.AppendComponentPointer(new Softmax(nnet.OutputDim(), nnet.OutputDim())); // Store the nnet, nnet.Write(target_model_filename, binary); time_now = time.Elapsed(); KALDI_LOG << "TRAINING FINISHED; " << "Time taken = " << time_now / 60 << " min; processed " << total_frames / time_now << " frames per second."; KALDI_LOG << "Done " << num_done << " files, " << num_no_ref_ali << " with no reference alignments, " << num_no_den_lat << " with no lattices, " << num_other_error << " with other errors."; KALDI_LOG << "Overall average frame-accuracy is " << total_frame_acc / total_frames << " over " << total_frames << " frames."; #if HAVE_CUDA == 1 CuDevice::Instantiate().PrintProfile(); #endif return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |