Blame view
src/nnetbin/rbm-train-cd1-frmshuff.cc
9.75 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
// nnetbin/rbm-train-cd1-frmshuff.cc // Copyright 2012-2013 Brno University of Technology (Author: Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet/nnet-trnopts.h" #include "nnet/nnet-rbm.h" #include "nnet/nnet-nnet.h" #include "nnet/nnet-loss.h" #include "nnet/nnet-randomizer.h" #include "base/kaldi-common.h" #include "util/common-utils.h" #include "base/timer.h" #include "cudamatrix/cu-device.h" #include "cudamatrix/cu-rand.h" int main(int argc, char *argv[]) { using namespace kaldi; using namespace kaldi::nnet1; typedef kaldi::int32 int32; try { const char *usage = "Train RBM by Contrastive Divergence alg. with 1 step of " "Markov Chain Monte-Carlo. " "The tool can perform several iterations (--num-iters) " "or it can subsample the training dataset (--drop-data) " "Usage: rbm-train-cd1-frmshuff [options] <model-in> " "<feature-rspecifier> <model-out> " "e.g.: rbm-train-cd1-frmshuff 1.rbm.init scp:train.scp 1.rbm "; ParseOptions po(usage); RbmTrainOptions trn_opts, trn_opts_rbm; trn_opts.Register(&po); LossOptions loss_opts; loss_opts.Register(&po); bool binary = false; po.Register("binary", &binary, "Write output in binary mode"); bool with_bug = true; po.Register("with-bug", &with_bug, "Apply bug which led to better results (set-initial-momentum-to-max)"); int32 num_iters = 1; po.Register("num-iters", &num_iters, "Number of iterations (smaller datasets should have more iterations, " "iterating within tool because of linear momentum scheduling)"); std::string feature_transform; po.Register("feature-transform", &feature_transform, "Feature transform in 'nnet1' format"); NnetDataRandomizerOptions rnd_opts; rnd_opts.minibatch_size = 100; rnd_opts.Register(&po); kaldi::int32 max_frames = 6000; po.Register("max-frames", &max_frames, "Maximum number of frames an utterance can have (skipped if longer)"); std::string use_gpu="yes"; po.Register("use-gpu", &use_gpu, "yes|no|optional, only has effect if compiled with CUDA"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2); std::string target_model_filename; target_model_filename = po.GetArg(3); using namespace kaldi; using namespace kaldi::nnet1; typedef kaldi::int32 int32; #if HAVE_CUDA == 1 CuDevice::Instantiate().SelectGpuId(use_gpu); #endif Nnet rbm_transf; if (feature_transform != "") { rbm_transf.Read(feature_transform); } // Read nnet, extract the RBM, Nnet nnet; nnet.Read(model_filename); KALDI_ASSERT(nnet.NumComponents() == 1); KALDI_ASSERT(nnet.GetComponent(0).GetType() == kaldi::nnet1::Component::kRbm); RbmBase &rbm = dynamic_cast<RbmBase&>(nnet.GetComponent(0)); // Configure the RBM, // make some constants accessible, will use them later, const BaseFloat& learn_rate = trn_opts.learn_rate; const BaseFloat& momentum = trn_opts.momentum; const BaseFloat& momentum_max = trn_opts.momentum_max; const int32& momentum_steps = trn_opts.momentum_steps; const int32& momentum_step_period = trn_opts.momentum_step_period; // 'trn_opts_rbm' is a local copy of 'trn_opts' which is passed to RBM, trn_opts_rbm = trn_opts; // keep `effective' learning rate constant trn_opts_rbm.learn_rate = learn_rate * (1 - momentum); // pass options to RBM, rbm.SetRbmTrainOptions(trn_opts_rbm); kaldi::int64 total_frames = 0; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomizerMask randomizer_mask(rnd_opts); MatrixRandomizer feature_randomizer(rnd_opts); CuRand<BaseFloat> cu_rand; // parallel random number generator, Mse mse(loss_opts); CuMatrix<BaseFloat> feats_transf, pos_hid, pos_hid_aux, neg_vis, neg_hid; CuMatrix<BaseFloat> dummy_mse_mat; Timer time; KALDI_LOG << "RBM TRAINING STARTED"; int32 iter = 1; KALDI_LOG << "Iteration " << iter << "/" << num_iters; int32 num_done = 0, num_other_error = 0; while (!feature_reader.Done()) { #if HAVE_CUDA == 1 // check that GPU is computing accurately, CuDevice::Instantiate().CheckGpuHealth(); #endif // fill the randomizer, for ( ; !feature_reader.Done(); feature_reader.Next()) { if (feature_randomizer.IsFull()) { // break the loop without calling Next(), // we keep the 'utt' for next round, break; } std::string utt = feature_reader.Key(); KALDI_VLOG(3) << "Reading " << utt; // get feature matrix, const Matrix<BaseFloat> &mat = feature_reader.Value(); // skip too long segments (avoid runinning out of memory) if (mat.NumRows() > max_frames) { KALDI_WARN << "Skipping " << utt << " that has " << mat.NumRows() << " frames," << " it is longer than '--max-frames'" << max_frames; num_other_error++; continue; } // apply feature transform, rbm_transf.Feedforward(CuMatrix<BaseFloat>(mat), &feats_transf); // add to randomizer, feature_randomizer.AddData(feats_transf); num_done++; // report the speed if (num_done % 5000 == 0) { double time_now = time.Elapsed(); KALDI_VLOG(1) << "After " << num_done << " utterances: " << "time elapsed = " << time_now / 60 << " min; " << "processed " << total_frames / time_now << " frames per sec."; } } // randomize, feature_randomizer.Randomize( randomizer_mask.Generate(feature_randomizer.NumFrames()) ); // train with data from randomizer (using mini-batches) for ( ; !feature_randomizer.Done(); feature_randomizer.Next()) { // get the mini-batch, const CuMatrixBase<BaseFloat>& pos_vis = feature_randomizer.Value(); // get the dims, int32 num_frames = pos_vis.NumRows(), dim_hid = rbm.OutputDim(); // Create dummy frame-weights for Mse::Eval, Vector<BaseFloat> dummy_weights(num_frames); dummy_weights.Set(1.0); // TRAIN with CD1, // forward pass, rbm.Propagate(pos_vis, &pos_hid); // alter the hidden values, so we can generate negative example, if (rbm.HidType() == Rbm::Bernoulli) { pos_hid_aux.Resize(num_frames, dim_hid); cu_rand.BinarizeProbs(pos_hid, &pos_hid_aux); // => 0 / 1, } else { KALDI_ASSERT(rbm.HidType() == Rbm::Gaussian); pos_hid_aux = pos_hid; cu_rand.AddGaussNoise(&pos_hid_aux); } // reconstruct pass, rbm.Reconstruct(pos_hid_aux, &neg_vis); // propagate negative examples rbm.Propagate(neg_vis, &neg_hid); // update step rbm.RbmUpdate(pos_vis, pos_hid, neg_vis, neg_hid); // evaluate mean square error mse.Eval(dummy_weights, neg_vis, pos_vis, &dummy_mse_mat); total_frames += num_frames; // change the momentum progressively per 0.5million samples of the data { static int32 n_prev = -1; BaseFloat step = (momentum_max - momentum) / momentum_steps; // change every momentum_step_period data, int32 n = total_frames / momentum_step_period; BaseFloat momentum_actual; if (n > momentum_steps) { momentum_actual = momentum_max; } else { momentum_actual = momentum + n*step; } if (n - n_prev > 0) { n_prev = n; BaseFloat learning_rate_actual = learn_rate*(1-momentum_actual); KALDI_VLOG(1) << "Setting momentum " << (with_bug ? momentum_max : momentum_actual) << " and learning rate " << learning_rate_actual << " after processing " << static_cast<double>(total_frames) / 360000 << " h"; // pass values to rbm, trn_opts_rbm.momentum = (with_bug ? momentum_max : momentum_actual); trn_opts_rbm.learn_rate = learning_rate_actual; rbm.SetRbmTrainOptions(trn_opts_rbm); } } } // reopen the feature stream if we will run another iteration if (feature_reader.Done() && (iter < num_iters)) { iter++; KALDI_LOG << "Iteration " << iter << "/" << num_iters; feature_reader.Close(); feature_reader.Open(feature_rspecifier); } } nnet.Write(target_model_filename, binary); KALDI_LOG << "Done " << iter << " iterations, " << num_done << " files, " << "skipped " << num_other_error << " files. " << "[" << time.Elapsed() / 60 << " min, " << "processing" << total_frames / time.Elapsed() << " " << "frames per sec.]"; KALDI_LOG << mse.Report(); #if HAVE_CUDA == 1 CuDevice::Instantiate().PrintProfile(); #endif return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |