Blame view

src/online/online-feat-input.cc 19.8 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
  // online/online-feat-input.cc
  
  // Copyright 2012 Cisco Systems (author: Matthias Paulik)
  
  //   Modifications to the original contribution by Cisco Systems made by:
  //   Vassil Panayotov
  //   Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "online-feat-input.h"
  
  namespace kaldi {
  
  
  // This is a wrapper for ComputeInternal.  It behaves exactly the
  // same as ComputeInternal, except that at the start of the file,
  // ComputeInternal may return empty output multiple times in a row.
  // This function prevents those initial non-productive calls, which
  // may otherwise confuse decoder code into thinking there is
  // a problem with the stream (too many timeouts), and cause it to fail.
  bool OnlineCmnInput::Compute(Matrix<BaseFloat> *output) {
    
    int32 orig_nr = output->NumRows(), orig_nc = output->NumCols();
    int32 initial_t_in = t_in_;
    bool ans;
    while ((ans = ComputeInternal(output))) {
      if (output->NumRows() == 0 &&
          t_in_ != initial_t_in) {
        // we produced no output but added to our internal buffer.
        // Call ComputeInternal again.
        initial_t_in = t_in_;
        output->Resize(orig_nr, orig_nc); // make the same request.
      } else {
        return ans;
      }
    }
    return ans;
    // ans = false.  If ComputeInternal returned false,
    // it means we are done, so no point calling it again.
  }
  
  
  int32 OnlineCmnInput::NumOutputFrames(int32 num_new_frames,
                                        bool more_data) const {
    // Tells the caller, assuming we get given "num_new_frames" of input (and
    // given knowledge of whether there is more data coming), how many frames
    // would we be able to output?
  
    int32 max_t = t_in_ + num_new_frames;
    if (max_t >= min_window_ || !more_data) {
      // If this takes us to "min_window_" frames, we'll output all we have.
      return num_new_frames + t_in_ - t_out_;
    } else {
      return 0; // We'll wait till we have at least "min_window_" frames.
    }
  }
  
  
  // What happens at the start of the utterance is not really ideal, it would be
  // better to have some "fake stats" extracted from typical data from this domain,
  // to start with.  We'll have to do this later.
  bool OnlineCmnInput::ComputeInternal(Matrix<BaseFloat> *output) {
    KALDI_ASSERT(output->NumRows() > 0 && output->NumCols() == Dim());
  
    Matrix<BaseFloat> input;
    input.Swap(output);
    
    bool more_data = input_->Compute(&input);
  
    int32 num_input_frames = input.NumRows();
    
    int32 output_frames = NumOutputFrames(num_input_frames,
                                          more_data);
    output->Resize(output_frames,
                   output_frames == 0 ? 0 : Dim());
    
    int32 output_counter = 0;
    for (int32 i = 0; i < num_input_frames; i++) {
      AcceptFrame(input.Row(i));
      while (t_in_ >= cmn_window_ && t_out_ < t_in_) {
        // We must output a frame now or we'll overwrite
        // frames we need in the buffer.
        SubVector<BaseFloat> this_frame(*output, output_counter);
        OutputFrame(&this_frame);
        output_counter++;
      }
    }
    for (; output_counter < output_frames; output_counter++) {
      SubVector<BaseFloat> this_frame(*output, output_counter);
      OutputFrame(&this_frame);
    }
    return more_data;
  }
  
  void OnlineCmnInput::AcceptFrame(const VectorBase<BaseFloat> &input) {
    KALDI_ASSERT(t_in_ <= t_out_ + cmn_window_);
    history_.Row(t_in_ % (cmn_window_ + 1)).CopyFromVec(input);
    t_in_++;
  }
  
  // Output the frame indexed "t_out_".
  void OnlineCmnInput::OutputFrame(VectorBase<BaseFloat> *output) {
    KALDI_ASSERT(t_out_ < t_in_); // or there is nothing to output.
    // First set "sum_".
    if (t_out_ == 0) { // This is the first request for an output frame,
      // so in general we need to set sum_ to the sum of the first "min_window_"
      // frames.  We will have less than min_window_ frames if the input finished
      // before then (if the input were not finished, we'd not have reached this
      // code).
      int32 num_frames = t_in_ < min_window_ ? t_in_ : min_window_;
      for (int32 i = 0; i < num_frames; i++)
        sum_.AddVec(1.0, history_.Row(i));
    }
    int32 num_history_frames;
    if (t_out_ >= cmn_window_) num_history_frames = cmn_window_;
    else if (t_out_ < min_window_)
      num_history_frames = (t_in_ < min_window_ ? t_in_ : min_window_);
    else
      num_history_frames = t_out_;
    
    SubVector<BaseFloat> input_frame(history_, t_out_ % (cmn_window_ + 1));
    output->CopyFromVec(input_frame);
    output->AddVec(-1.0 / num_history_frames, sum_); // Apply CMN to the output.
    
    // Update sum.
    if (t_out_ >= min_window_)
      sum_.AddVec(1.0, input_frame);
    if (t_out_ >= cmn_window_) { // Remove the frame from "cmn_window_" frames ago.
      sum_.AddVec(-1.0, history_.Row((t_out_ - cmn_window_) % (cmn_window_ + 1)));
      KALDI_ASSERT(t_in_ == t_out_ + 1); // or else the frame indexed t_out_ -
                                         // cmn_window_ would not be the right one.
    }
    t_out_++;
  }
  
  #if !defined(_MSC_VER)
  
  OnlineUdpInput::OnlineUdpInput(int32 port, int32 feature_dim):
      feature_dim_(feature_dim) {
    server_addr_.sin_family = AF_INET; // IPv4
    server_addr_.sin_addr.s_addr = INADDR_ANY; // listen on all interfaces
    server_addr_.sin_port = htons(port);
    sock_desc_ = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
    if (sock_desc_ == -1)
      KALDI_ERR << "socket() call failed!";
    int32 rcvbuf_size = 30000;
    if (setsockopt(sock_desc_, SOL_SOCKET, SO_RCVBUF,
                   &rcvbuf_size, sizeof(rcvbuf_size)) == -1)
        KALDI_ERR << "setsockopt() failed to set receive buffer size!";
    if (bind(sock_desc_,
             reinterpret_cast<sockaddr*>(&server_addr_),
             sizeof(server_addr_)) == -1)
      KALDI_ERR << "bind() call failed!";
  }
  
  
  bool OnlineUdpInput::Compute(Matrix<BaseFloat> *output) {
    char buf[65535];
    socklen_t caddr_len = sizeof(client_addr_);
    ssize_t nrecv = recvfrom(sock_desc_, buf, sizeof(buf), 0,
                             reinterpret_cast<sockaddr*>(&client_addr_),
                             &caddr_len);
    if (nrecv == -1) {
      KALDI_WARN << "recvfrom() call error!";
      output->Resize(0, 0);
      return false;
    }
    std::stringstream ss(std::stringstream::in | std::stringstream::out);
    ss.write(buf, nrecv);
    output->Read(ss, true);
    return true;
  }
  
  #endif
  
  
  OnlineLdaInput::OnlineLdaInput(OnlineFeatInputItf *input,
                                 const Matrix<BaseFloat> &transform,
                                 int32 left_context,
                                 int32 right_context):
      input_(input), input_dim_(input->Dim()),
      left_context_(left_context), right_context_(right_context) {
  
    int32 tot_context = left_context + 1 + right_context;
    if (transform.NumCols() == input_dim_ * tot_context) {
      linear_transform_ = transform;
      // and offset_ stays empty.
    } else if (transform.NumCols() == input_dim_ * tot_context + 1) {
      linear_transform_.Resize(transform.NumRows(), transform.NumCols() - 1);
      linear_transform_.CopyFromMat(transform.Range(0, transform.NumRows(),
                                             0, transform.NumCols() - 1));
      offset_.Resize(transform.NumRows());
      offset_.CopyColFromMat(transform, transform.NumCols() - 1);
    } else {
      KALDI_ERR << "Invalid parameters supplied to OnlineLdaInput";
    }
  }
  
  // static
  void OnlineLdaInput::SpliceFrames(const MatrixBase<BaseFloat> &input1,
                                    const MatrixBase<BaseFloat> &input2,
                                    const MatrixBase<BaseFloat> &input3,
                                    int32 context_window,
                                    Matrix<BaseFloat> *output) {
    KALDI_ASSERT(context_window > 0);
    const int32 size1 = input1.NumRows(), size2 = input2.NumRows(),
        size3 = input3.NumRows();
    int32 num_frames_in = size1 + size2 + size3,
        num_frames_out = num_frames_in - (context_window - 1),
        dim = std::max(input1.NumCols(), std::max(input2.NumCols(), input3.NumCols()));
    // do std::max in case one or more of the input matrices is empty.
    
    if (num_frames_out <= 0) {
      output->Resize(0, 0);
      return;
    }
    output->Resize(num_frames_out, dim * context_window);
    for (int32 t_out = 0; t_out < num_frames_out; t_out++) {
      for (int32 pos = 0; pos < context_window; pos++) {
        int32 t_in = t_out + pos;
        SubVector<BaseFloat> vec_out(output->Row(t_out), pos * dim, dim);
        if (t_in < size1)
          vec_out.CopyFromVec(input1.Row(t_in));
        else if (t_in < size1 + size2)
          vec_out.CopyFromVec(input2.Row(t_in - size1));
        else
          vec_out.CopyFromVec(input3.Row(t_in - size1 - size2));
      }
    }
  }
  
  void OnlineLdaInput::TransformToOutput(const MatrixBase<BaseFloat> &spliced_feats,
                                         Matrix<BaseFloat> *output) {
    if (spliced_feats.NumRows() == 0) {
      output->Resize(0, 0);
    } else {
      output->Resize(spliced_feats.NumRows(), linear_transform_.NumRows());
      output->AddMatMat(1.0, spliced_feats, kNoTrans,
                        linear_transform_, kTrans, 0.0);
      if (offset_.Dim() != 0)
        output->AddVecToRows(1.0, offset_);
    }
  }
  
  bool OnlineLdaInput::Compute(Matrix<BaseFloat> *output) {
    KALDI_ASSERT(output->NumRows() > 0 &&
                 output->NumCols() == linear_transform_.NumRows());
    // If output->NumRows() == 0, it corresponds to a request for zero frames,
    // which makes no sense.
  
    // We request the same number of frames of data that we were requested.
    Matrix<BaseFloat> input(output->NumRows(), input_dim_);
    bool ans = input_->Compute(&input);
    // If we got no input (timed out) and we're not at the end, we return
    // empty output.
  
    if (input.NumRows() == 0 && ans) {
      output->Resize(0, 0);
      return ans;
    } else if (input.NumRows() == 0 && !ans) {
      // The end of the input stream, but no input this time.
      if (remainder_.NumRows() == 0) {
        output->Resize(0, 0);
        return ans;
      }
    }
  
    // If this is the first segment of the utterance, we put in the
    // initial duplicates of the first frame, numbered "left_context".
    if (remainder_.NumRows() == 0 && input.NumRows() != 0 && left_context_ != 0) {
      remainder_.Resize(left_context_, input_dim_);
      for (int32 i = 0; i < left_context_; i++)
        remainder_.Row(i).CopyFromVec(input.Row(0));
    }
  
    // If this is the last segment, we put in the final duplicates of the
    // last frame, numbered "right_context".
    Matrix<BaseFloat> tail;
    if (!ans && right_context_ > 0) {
      tail.Resize(right_context_, input_dim_);
      for (int32 i = 0; i < right_context_; i++) {
        if (input.NumRows() > 0)
          tail.Row(i).CopyFromVec(input.Row(input.NumRows() - 1));
        else
          tail.Row(i).CopyFromVec(remainder_.Row(remainder_.NumRows() - 1));
      }
    }
    
    Matrix<BaseFloat> spliced_feats;
    int32 context_window = left_context_ + 1 + right_context_;
    // The next line is a call to a member function.
    SpliceFrames(remainder_, input, tail, context_window, &spliced_feats);
    TransformToOutput(spliced_feats, output);
    ComputeNextRemainder(input);
    return ans; 
  }
  
  void OnlineLdaInput::ComputeNextRemainder(const MatrixBase<BaseFloat> &input) {
    // The size of the remainder that we propagate to the next frame is
    // context_window - 1, if available.
    int32 context_window = left_context_ + 1 + right_context_;
    int32 next_remainder_len = std::min(context_window - 1,
                                        remainder_.NumRows() + input.NumRows());
    if (next_remainder_len == 0) {
      remainder_.Resize(0, 0);
      return;
    }
    Matrix<BaseFloat> next_remainder(next_remainder_len, input_dim_);
    int32 rsize = remainder_.NumRows(), isize = input.NumRows();
    for (int32 i = 0; i < next_remainder_len; i++) {
      SubVector<BaseFloat> dest(next_remainder, i);
      int32 t = (rsize + isize) - next_remainder_len + i;
      // Here, t is an offset into a numbering of the frames where we first have
      // the old "remainder" frames, then the regular frames.
      if (t < rsize) dest.CopyFromVec(remainder_.Row(t));
      else dest.CopyFromVec(input.Row(t - rsize));
    }
    remainder_ = next_remainder;
  }
  
  
  bool OnlineCacheInput::Compute(Matrix<BaseFloat> *output) {
    bool ans = input_->Compute(output);
    if (output->NumRows() != 0)
      data_.push_back(new Matrix<BaseFloat>(*output));
    return ans;
  }
  
  void OnlineCacheInput::GetCachedData(Matrix<BaseFloat> *output) {
    int32 num_frames = 0, dim = 0;
    for (size_t i = 0; i < data_.size(); i++) {
      num_frames += data_[i]->NumRows();
      dim = data_[i]->NumCols();
    }
    output->Resize(num_frames, dim);
    int32 frame_offset = 0;
    for (size_t i = 0; i < data_.size(); i++) {
      int32 this_frames = data_[i]->NumRows();
      output->Range(frame_offset, this_frames, 0, dim).CopyFromMat(*data_[i]);
      frame_offset += this_frames;
    }
    KALDI_ASSERT(frame_offset == num_frames);
  }
  
  void OnlineCacheInput::Deallocate() {
    for (size_t i = 0; i < data_.size(); i++) delete data_[i];
    data_.clear();
  }
  
  
  OnlineDeltaInput::OnlineDeltaInput(const DeltaFeaturesOptions &delta_opts,
                                     OnlineFeatInputItf *input):
      input_(input), opts_(delta_opts), input_dim_(input_->Dim()) { }
  
  
  // static
  void OnlineDeltaInput::AppendFrames(const MatrixBase<BaseFloat> &input1,
                                      const MatrixBase<BaseFloat> &input2,
                                      const MatrixBase<BaseFloat> &input3,
                                      Matrix<BaseFloat> *output) {
    const int32 size1 = input1.NumRows(), size2 = input2.NumRows(),
        size3 = input3.NumRows(), size_out = size1 + size2 + size3;
    if (size_out == 0) {
      output->Resize(0, 0);
      return;
    }
    // do std::max in case one or more of the input matrices is empty.  
    int32 dim = std::max(input1.NumCols(),
                         std::max(input2.NumCols(), input3.NumCols()));
  
    output->Resize(size_out, dim);
    if (size1 != 0)
      output->Range(0, size1, 0, dim).CopyFromMat(input1);
    if (size2 != 0)
      output->Range(size1, size2, 0, dim).CopyFromMat(input2);
    if (size3 != 0)
      output->Range(size1 + size2, size3, 0, dim).CopyFromMat(input3);
  }
  
  void OnlineDeltaInput::DeltaComputation(const MatrixBase<BaseFloat> &input,
                                          Matrix<BaseFloat> *output,
                                          Matrix<BaseFloat> *remainder) const {
    int32 input_rows = input.NumRows(),
        output_rows = std::max(0, input_rows - Context() * 2),
        remainder_rows = std::min(input_rows, Context() * 2),
        input_dim = input_dim_,
        output_dim = Dim();
    if (remainder_rows > 0) {
      remainder->Resize(remainder_rows, input_dim);
      remainder->CopyFromMat(input.Range(input_rows - remainder_rows,
                                         remainder_rows, 0, input_dim));
    } else {
      remainder->Resize(0, 0);
    }
    if (output_rows > 0) {
      output->Resize(output_rows, output_dim);
      DeltaFeatures delta(opts_);
      for (int32 output_frame = 0; output_frame < output_rows; output_frame++) {
        int32 input_frame = output_frame + Context();
        SubVector<BaseFloat> output_row(*output, output_frame);
        delta.Process(input, input_frame, &output_row);
      }
    } else {
      output->Resize(0, 0);
    }
  }                                     
  
  bool OnlineDeltaInput::Compute(Matrix<BaseFloat> *output) {
    KALDI_ASSERT(output->NumRows() > 0 &&
                 output->NumCols() == Dim());
    // If output->NumRows() == 0, it corresponds to a request for zero frames,
    // which makes no sense.
  
    // We request the same number of frames of data that we were requested.
    Matrix<BaseFloat> input(output->NumRows(), input_dim_);
    bool ans = input_->Compute(&input);
  
    // If we got no input (timed out) and we're not at the end, we return
    // empty output.
    if (input.NumRows() == 0 && ans) {
      output->Resize(0, 0);
      return ans;
    } else if (input.NumRows() == 0 && !ans) {
      // The end of the input stream, but no input this time.
      if (remainder_.NumRows() == 0) {
        output->Resize(0, 0);
        return ans;
      }
    }
  
    // If this is the first segment of the utterance, we put in the
    // initial duplicates of the first frame, numbered "Context()"
    if (remainder_.NumRows() == 0 && input.NumRows() != 0 && Context() != 0) {
      remainder_.Resize(Context(), input_dim_);
      for (int32 i = 0; i < Context(); i++)
        remainder_.Row(i).CopyFromVec(input.Row(0));
    }
  
    // If this is the last segment, we put in the final duplicates of the
    // last frame, numbered "Context()".
    Matrix<BaseFloat> tail;
    if (!ans && Context() > 0) {
      tail.Resize(Context(), input_dim_);
      for (int32 i = 0; i < Context(); i++) {
        if (input.NumRows() > 0)
          tail.Row(i).CopyFromVec(input.Row(input.NumRows() - 1));
        else
          tail.Row(i).CopyFromVec(remainder_.Row(remainder_.NumRows() - 1));
      }
    }
    
    Matrix<BaseFloat> appended_feats;
    AppendFrames(remainder_, input, tail, &appended_feats);
    DeltaComputation(appended_feats, output, &remainder_);
    return ans; 
  }
  
  
  
  void OnlineFeatureMatrix::GetNextFeatures() {
    if (finished_) return; // Nothing to do.
    
    // We always keep the most recent frame of features, if present,
    // in case it is needed (this may happen when someone calls
    // IsLastFrame(), which requires us to get the next frame, while
    // they're stil processing this frame.
    bool have_last_frame = (feat_matrix_.NumRows() != 0);
    Vector<BaseFloat> last_frame;
    if (have_last_frame)
      last_frame = feat_matrix_.Row(feat_matrix_.NumRows() - 1);
  
    int32 iter;
    for (iter = 0; iter < opts_.num_tries; iter++) {
      Matrix<BaseFloat> next_features(opts_.batch_size, feat_dim_);
      finished_ = ! input_->Compute(&next_features);
      if (next_features.NumRows() == 0 && ! finished_) {
        // It timed out.  Try again.
        continue;
      }
      if (next_features.NumRows() > 0) {
        int32 new_size = (have_last_frame ? 1 : 0) +
            next_features.NumRows();
        feat_offset_ += feat_matrix_.NumRows() -
            (have_last_frame ? 1 : 0); // we're discarding this many
                                       // frames.
        feat_matrix_.Resize(new_size, feat_dim_, kUndefined);
        if (have_last_frame) {
          feat_matrix_.Row(0).CopyFromVec(last_frame);
          feat_matrix_.Range(1, next_features.NumRows(), 0, feat_dim_).
              CopyFromMat(next_features);
        } else {
          feat_matrix_.CopyFromMat(next_features);
        }
      }
      break;
    }
    if (iter == opts_.num_tries) { // we fell off the loop
      KALDI_WARN << "After " << opts_.num_tries << ", got no features, giving up.";
      finished_ = true; // We set finished_ to true even though the stream
      // doesn't say it's finished, because the delay is too much-- we gave up.
    }
  }
  
  
  bool OnlineFeatureMatrix::IsValidFrame (int32 frame) {
     KALDI_ASSERT(frame >= feat_offset_ &&
                 "You are attempting to get expired frames.");
    if (frame < feat_offset_ + feat_matrix_.NumRows())
      return true;
    else {
      GetNextFeatures();
      if (frame < feat_offset_ + feat_matrix_.NumRows())
        return true;
      else {
        if (finished_) return false;
        else {
          KALDI_WARN << "Unexpected point reached in code: "
                     << "possibly you are skipping frames?";
          return false;
        }
      }
    }
  }
  
  SubVector<BaseFloat> OnlineFeatureMatrix::GetFrame(int32 frame) {
    if (frame < feat_offset_)
      KALDI_ERR << "Attempting to get a discarded frame.";
    if (frame >= feat_offset_ + feat_matrix_.NumRows())
      KALDI_ERR << "Attempt get frame without check its validity.";
    return feat_matrix_.Row(frame - feat_offset_);
  }
  
  
  } // namespace kaldi