Blame view
src/online2/online-nnet2-decoding-threaded.cc
24.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
// online2/online-nnet2-decoding-threaded.cc // Copyright 2013-2014 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "online2/online-nnet2-decoding-threaded.h" #include "nnet2/nnet-compute-online.h" #include "lat/lattice-functions.h" #include "lat/determinize-lattice-pruned.h" #include "util/kaldi-thread.h" namespace kaldi { ThreadSynchronizer::ThreadSynchronizer(): abort_(false), producer_waiting_(false), consumer_waiting_(false), num_errors_(0) { producer_semaphore_.Signal(); consumer_semaphore_.Signal(); } bool ThreadSynchronizer::Lock(ThreadType t) { if (abort_) return false; if (t == ThreadSynchronizer::kProducer) { producer_semaphore_.Wait(); } else { consumer_semaphore_.Wait(); } if (abort_) return false; mutex_.lock(); held_by_ = t; if (abort_) { mutex_.unlock(); return false; } else { return true; } } bool ThreadSynchronizer::UnlockSuccess(ThreadType t) { if (t == ThreadSynchronizer::kProducer) { producer_semaphore_.Signal(); // next Lock won't wait. if (consumer_waiting_) { consumer_semaphore_.Signal(); consumer_waiting_ = false; } } else { consumer_semaphore_.Signal(); // next Lock won't wait. if (producer_waiting_) { producer_semaphore_.Signal(); producer_waiting_ = false; } } mutex_.unlock(); return !abort_; } bool ThreadSynchronizer::UnlockFailure(ThreadType t) { KALDI_ASSERT(held_by_ == t && "Code error: unlocking a mutex you don't hold."); if (t == ThreadSynchronizer::kProducer) { KALDI_ASSERT(!producer_waiting_ && "code error."); producer_waiting_ = true; } else { KALDI_ASSERT(!consumer_waiting_ && "code error."); consumer_waiting_ = true; } mutex_.unlock(); return !abort_; } void ThreadSynchronizer::SetAbort() { abort_ = true; // we signal the semaphores just in case someone was waiting on either of // them. producer_semaphore_.Signal(); consumer_semaphore_.Signal(); } ThreadSynchronizer::~ThreadSynchronizer() { } // static void OnlineNnet2DecodingThreadedConfig::Check() { KALDI_ASSERT(max_buffered_features > 1); KALDI_ASSERT(feature_batch_size > 0); KALDI_ASSERT(max_loglikes_copy >= 0); KALDI_ASSERT(nnet_batch_size > 0); KALDI_ASSERT(decode_batch_size >= 1); } SingleUtteranceNnet2DecoderThreaded::SingleUtteranceNnet2DecoderThreaded( const OnlineNnet2DecodingThreadedConfig &config, const TransitionModel &tmodel, const nnet2::AmNnet &am_nnet, const fst::Fst<fst::StdArc> &fst, const OnlineNnet2FeaturePipelineInfo &feature_info, const OnlineIvectorExtractorAdaptationState &adaptation_state): config_(config), am_nnet_(am_nnet), tmodel_(tmodel), sampling_rate_(0.0), num_samples_received_(0), input_finished_(false), feature_pipeline_(feature_info), num_samples_discarded_(0), silence_weighting_(tmodel, feature_info.silence_weighting_config), decodable_(tmodel), num_frames_decoded_(0), decoder_(fst, config_.decoder_opts), abort_(false), error_(false) { // if the user supplies an adaptation state that was not freshly initialized, // it means that we take the adaptation state from the previous // utterance(s)... this only makes sense if theose previous utterance(s) are // believed to be from the same speaker. feature_pipeline_.SetAdaptationState(adaptation_state); // spawn threads. threads_[0] = std::thread(RunNnetEvaluation, this); decoder_.InitDecoding(); threads_[1] = std::thread(RunDecoderSearch, this); } SingleUtteranceNnet2DecoderThreaded::~SingleUtteranceNnet2DecoderThreaded() { if (!abort_) { // If we have not already started the process of aborting the threads, do so now. bool error = false; AbortAllThreads(error); } // join all the threads (this avoids leaving zombie threads around, or threads // that might be accessing deconstructed object). WaitForAllThreads(); while (!input_waveform_.empty()) { delete input_waveform_.front(); input_waveform_.pop_front(); } while (!processed_waveform_.empty()) { delete processed_waveform_.front(); processed_waveform_.pop_front(); } } void SingleUtteranceNnet2DecoderThreaded::AcceptWaveform( BaseFloat sampling_rate, const VectorBase<BaseFloat> &wave_part) { if (sampling_rate_ <= 0.0) sampling_rate_ = sampling_rate; else { KALDI_ASSERT(sampling_rate == sampling_rate_); } num_samples_received_ += wave_part.Dim(); if (wave_part.Dim() == 0) return; if (!waveform_synchronizer_.Lock(ThreadSynchronizer::kProducer)) { KALDI_ERR << "Failure locking mutex: decoding aborted."; } Vector<BaseFloat> *new_part = new Vector<BaseFloat>(wave_part); input_waveform_.push_back(new_part); // we always unlock with success because there is no buffer size limitation // for the waveform so no reason why we might wait. waveform_synchronizer_.UnlockSuccess(ThreadSynchronizer::kProducer); } int32 SingleUtteranceNnet2DecoderThreaded::NumWaveformPiecesPending() { // Note RE locking: what we really want here is just to lock the mutex. As a // side effect, because of the way the synchronizer code works, it will also // increment the semaphore and might wake up the consumer thread. This will // possibly make it do a little useless work (go around a loop once), but // won't really do any harm. Perhaps we should have implemented a version of // the Lock function that takes no arguments. if (!waveform_synchronizer_.Lock(ThreadSynchronizer::kProducer)) { KALDI_ERR << "Failure locking mutex: decoding aborted."; } int32 ans = input_waveform_.size(); waveform_synchronizer_.UnlockSuccess(ThreadSynchronizer::kProducer); return ans; } int32 SingleUtteranceNnet2DecoderThreaded::NumFramesReceivedApprox() const { return num_samples_received_ / (sampling_rate_ * feature_pipeline_.FrameShiftInSeconds()); } void SingleUtteranceNnet2DecoderThreaded::InputFinished() { // setting input_finished_ = true informs the feature-processing pipeline // to expect no more input, and to flush out the last few frames if there // is any latency in the pipeline (e.g. due to pitch). if (!waveform_synchronizer_.Lock(ThreadSynchronizer::kProducer)) { KALDI_ERR << "Failure locking mutex: decoding aborted."; } KALDI_ASSERT(!input_finished_ && "InputFinished called twice"); input_finished_ = true; waveform_synchronizer_.UnlockSuccess(ThreadSynchronizer::kProducer); } void SingleUtteranceNnet2DecoderThreaded::TerminateDecoding() { bool error = false; AbortAllThreads(error); } void SingleUtteranceNnet2DecoderThreaded::Wait() { if (!input_finished_ && !abort_) { KALDI_ERR << "You cannot call Wait() before calling either InputFinished() " << "or TerminateDecoding()."; } WaitForAllThreads(); } void SingleUtteranceNnet2DecoderThreaded::FinalizeDecoding() { if (threads_[0].joinable()) { KALDI_ERR << "It is an error to call FinalizeDecoding before Wait()."; } decoder_.FinalizeDecoding(); } BaseFloat SingleUtteranceNnet2DecoderThreaded::GetRemainingWaveform( Vector<BaseFloat> *waveform) const { if (threads_[0].joinable()) { KALDI_ERR << "It is an error to call GetRemainingWaveform before Wait()."; } int64 num_samples_stored = 0; // number of samples we still have. std::vector< Vector<BaseFloat>* > all_pieces; std::deque< Vector<BaseFloat>* >::const_iterator iter; for (iter = processed_waveform_.begin(); iter != processed_waveform_.end(); ++iter) { num_samples_stored += (*iter)->Dim(); all_pieces.push_back(*iter); } for (iter = input_waveform_.begin(); iter != input_waveform_.end(); ++iter) { num_samples_stored += (*iter)->Dim(); all_pieces.push_back(*iter); } int64 samples_shift_per_frame = sampling_rate_ * feature_pipeline_.FrameShiftInSeconds(); int64 num_samples_to_discard = samples_shift_per_frame * num_frames_decoded_; KALDI_ASSERT(num_samples_to_discard >= num_samples_discarded_); // num_samp_discard is how many samples we must discard from our stored // samples. int64 num_samp_discard = num_samples_to_discard - num_samples_discarded_, num_samp_keep = num_samples_stored - num_samp_discard; KALDI_ASSERT(num_samp_discard <= num_samples_stored && num_samp_keep >= 0); waveform->Resize(num_samp_keep, kUndefined); int32 offset = 0; // offset in output waveform. assume output waveform is no // larger than int32. for (size_t i = 0; i < all_pieces.size(); i++) { Vector<BaseFloat> *this_piece = all_pieces[i]; int32 this_dim = this_piece->Dim(); if (num_samp_discard >= this_dim) { num_samp_discard -= this_dim; } else { // normal case is num_samp_discard = 0. int32 this_dim_keep = this_dim - num_samp_discard; waveform->Range(offset, this_dim_keep).CopyFromVec( this_piece->Range(num_samp_discard, this_dim_keep)); offset += this_dim_keep; num_samp_discard = 0; } } KALDI_ASSERT(offset == num_samp_keep && num_samp_discard == 0); return sampling_rate_; } void SingleUtteranceNnet2DecoderThreaded::GetAdaptationState( OnlineIvectorExtractorAdaptationState *adaptation_state) { std::lock_guard<std::mutex> lock(feature_pipeline_mutex_); // If this blocks, it shouldn't be for very long. feature_pipeline_.GetAdaptationState(adaptation_state); } void SingleUtteranceNnet2DecoderThreaded::GetLattice( bool end_of_utterance, CompactLattice *clat, BaseFloat *final_relative_cost) const { clat->DeleteStates(); decoder_mutex_.lock(); if (final_relative_cost != NULL) *final_relative_cost = decoder_.FinalRelativeCost(); if (decoder_.NumFramesDecoded() == 0) { decoder_mutex_.unlock(); clat->SetFinal(clat->AddState(), CompactLatticeWeight::One()); return; } Lattice raw_lat; decoder_.GetRawLattice(&raw_lat, end_of_utterance); decoder_mutex_.unlock(); if (!config_.decoder_opts.determinize_lattice) KALDI_ERR << "--determinize-lattice=false option is not supported at the moment"; BaseFloat lat_beam = config_.decoder_opts.lattice_beam; DeterminizeLatticePhonePrunedWrapper( tmodel_, &raw_lat, lat_beam, clat, config_.decoder_opts.det_opts); } void SingleUtteranceNnet2DecoderThreaded::GetBestPath( bool end_of_utterance, Lattice *best_path, BaseFloat *final_relative_cost) const { std::lock_guard<std::mutex> lock(decoder_mutex_); if (decoder_.NumFramesDecoded() == 0) { // It's possible that this if-statement is not necessary because we'd get this // anyway if we just called GetBestPath on the decoder. best_path->DeleteStates(); best_path->SetFinal(best_path->AddState(), LatticeWeight::One()); if (final_relative_cost != NULL) *final_relative_cost = std::numeric_limits<BaseFloat>::infinity(); } else { decoder_.GetBestPath(best_path, end_of_utterance); if (final_relative_cost != NULL) *final_relative_cost = decoder_.FinalRelativeCost(); } } void SingleUtteranceNnet2DecoderThreaded::AbortAllThreads(bool error) { abort_ = true; if (error) error_ = true; waveform_synchronizer_.SetAbort(); decodable_synchronizer_.SetAbort(); } int32 SingleUtteranceNnet2DecoderThreaded::NumFramesDecoded() const { std::lock_guard<std::mutex> lock(decoder_mutex_); return decoder_.NumFramesDecoded(); } void SingleUtteranceNnet2DecoderThreaded::RunNnetEvaluation( SingleUtteranceNnet2DecoderThreaded *me) { try { if (!me->RunNnetEvaluationInternal() && !me->abort_) KALDI_ERR << "Returned abnormally and abort was not called"; } catch(const std::exception &e) { KALDI_WARN << "Caught exception: " << e.what(); // if an error happened in one thread, we need to make sure the other // threads can exit too. bool error = true; me->AbortAllThreads(error); } } void SingleUtteranceNnet2DecoderThreaded::RunDecoderSearch( SingleUtteranceNnet2DecoderThreaded *me) { try { if (!me->RunDecoderSearchInternal() && !me->abort_) KALDI_ERR << "Returned abnormally and abort was not called"; } catch(const std::exception &e) { KALDI_WARN << "Caught exception: " << e.what(); // if an error happened in one thread, we need to make sure the other threads can exit too. bool error = true; me->AbortAllThreads(error); } } void SingleUtteranceNnet2DecoderThreaded::WaitForAllThreads() { for (int32 i = 0; i < 2; i++) { // there are 2 spawned threads. if (threads_[i].joinable()) threads_[i].join(); } if (error_) KALDI_ERR << "Error encountered during decoding. See above."; } void SingleUtteranceNnet2DecoderThreaded::ProcessLoglikes( const CuVector<BaseFloat> &log_inv_prior, CuMatrixBase<BaseFloat> *cu_loglikes) { if (cu_loglikes->NumRows() != 0) { cu_loglikes->ApplyFloor(1.0e-20); cu_loglikes->ApplyLog(); // take the log-posteriors and turn them into pseudo-log-likelihoods by // dividing by the pdf priors; then scale by the acoustic scale. cu_loglikes->AddVecToRows(1.0, log_inv_prior); cu_loglikes->Scale(config_.acoustic_scale); } } // called from RunNnetEvaluationInternal(). Returns true in the normal case, // false on error; if it returns false, then we expect that the calling thread // will terminate. This assumes the calling thread has already // locked feature_pipeline_mutex_. bool SingleUtteranceNnet2DecoderThreaded::FeatureComputation( int32 num_frames_consumed) { int32 num_frames_ready = feature_pipeline_.NumFramesReady(), num_frames_usable = num_frames_ready - num_frames_consumed; bool features_done = feature_pipeline_.IsLastFrame(num_frames_ready - 1); KALDI_ASSERT(num_frames_usable >= 0); if (features_done) { return true; // nothing to do. (but not an error). } else { if (num_frames_usable >= config_.nnet_batch_size) return true; // We don't need more data yet. // Now try to get more data, if we can. if (!waveform_synchronizer_.Lock(ThreadSynchronizer::kConsumer)) { return false; } // we've got the lock. if (input_waveform_.empty()) { // we got no data if (input_finished_ && !feature_pipeline_.IsLastFrame(feature_pipeline_.NumFramesReady()-1)) { // the main thread called InputFinished() and set input_finished_, and // we haven't yet registered that fact. This is progress so // unlock with UnlockSuccess(). feature_pipeline_.InputFinished(); return waveform_synchronizer_.UnlockSuccess(ThreadSynchronizer::kConsumer); } else { // there is no progress. Unlock with UnlockFailure() so the next call to // waveform_synchronizer_.Lock() will lock. return waveform_synchronizer_.UnlockFailure(ThreadSynchronizer::kConsumer); } } else { // we got some data. Only take enough of the waveform to // give us a maximum nnet batch size of frames to decode. while (num_frames_usable < config_.nnet_batch_size && !input_waveform_.empty()) { feature_pipeline_.AcceptWaveform(sampling_rate_, *input_waveform_.front()); processed_waveform_.push_back(input_waveform_.front()); input_waveform_.pop_front(); num_frames_ready = feature_pipeline_.NumFramesReady(); num_frames_usable = num_frames_ready - num_frames_consumed; } // Delete already-processed pieces of waveform if we have already decoded // those frames. (If not already decoded, we keep them around for the // sake of GetRemainingWaveform()). int32 samples_shift_per_frame = sampling_rate_ * feature_pipeline_.FrameShiftInSeconds(); while (!processed_waveform_.empty() && num_samples_discarded_ + processed_waveform_.front()->Dim() < samples_shift_per_frame * num_frames_decoded_) { num_samples_discarded_ += processed_waveform_.front()->Dim(); delete processed_waveform_.front(); processed_waveform_.pop_front(); } return waveform_synchronizer_.UnlockSuccess(ThreadSynchronizer::kConsumer); } } } bool SingleUtteranceNnet2DecoderThreaded::RunNnetEvaluationInternal() { // if any of the Lock/Unlock functions return false, it's because AbortAllThreads() // was called. // This object is responsible for keeping track of the context, and avoiding // re-computing things we've already computed. bool pad_input = true; nnet2::NnetOnlineComputer computer(am_nnet_.GetNnet(), pad_input); // we declare the following as CuVector just to enable GPU support, but // we expect this code to be run on CPU in the normal case. CuVector<BaseFloat> log_inv_prior(am_nnet_.Priors()); log_inv_prior.ApplyFloor(1.0e-20); // should have no effect. log_inv_prior.ApplyLog(); log_inv_prior.Scale(-1.0); // we'll have num_frames_consumed >= num_frames_output; num_frames_consumed is // the number of feature frames consumed by the nnet computation, // num_frames_output is the number of frames of loglikes the nnet computation // has produced, which may be less than num_frames_consumed due to the // right-context of the network. int32 num_frames_consumed = 0, num_frames_output = 0; while (true) { bool last_time = false; /****** Begin locking of feature pipeline mutex. ******/ feature_pipeline_mutex_.lock(); if (!FeatureComputation(num_frames_consumed)) { // error feature_pipeline_mutex_.unlock(); return false; } // take care of silence weighting. if (silence_weighting_.Active() && feature_pipeline_.IvectorFeature() != NULL) { silence_weighting_mutex_.lock(); std::vector<std::pair<int32, BaseFloat> > delta_weights; silence_weighting_.GetDeltaWeights( feature_pipeline_.IvectorFeature()->NumFramesReady(), &delta_weights); silence_weighting_mutex_.unlock(); feature_pipeline_.IvectorFeature()->UpdateFrameWeights(delta_weights); } int32 num_frames_ready = feature_pipeline_.NumFramesReady(), num_frames_usable = num_frames_ready - num_frames_consumed; bool features_done = feature_pipeline_.IsLastFrame(num_frames_ready - 1); int32 num_frames_evaluate = std::min<int32>(num_frames_usable, config_.nnet_batch_size); Matrix<BaseFloat> feats; if (num_frames_evaluate > 0) { // we have something to do... feats.Resize(num_frames_evaluate, feature_pipeline_.Dim()); for (int32 i = 0; i < num_frames_evaluate; i++) { int32 t = num_frames_consumed + i; SubVector<BaseFloat> feat(feats, i); feature_pipeline_.GetFrame(t, &feat); } } /****** End locking of feature pipeline mutex. ******/ feature_pipeline_mutex_.unlock(); CuMatrix<BaseFloat> cu_loglikes; if (feats.NumRows() == 0) { if (features_done) { // flush out the last few frames. Note: this is the only place from // which we check feature_buffer_finished_, and we'll exit the loop, so // if we reach here it must be the first time it was true. last_time = true; computer.Flush(&cu_loglikes); ProcessLoglikes(log_inv_prior, &cu_loglikes); } } else { CuMatrix<BaseFloat> cu_feats; cu_feats.Swap(&feats); // If we don't have a GPU (and not having a GPU is // the normal expected use-case for this code), // this would be a lightweight operation, swapping // pointers. computer.Compute(cu_feats, &cu_loglikes); num_frames_consumed += cu_feats.NumRows(); ProcessLoglikes(log_inv_prior, &cu_loglikes); } Matrix<BaseFloat> loglikes; loglikes.Swap(&cu_loglikes); // If we don't have a GPU (and not having a // GPU is the normal expected use-case for // this code), this would be a lightweight // operation, swapping pointers. // OK, at this point we may have some newly created log-likes and we want to // give them to the decoding thread. int32 num_loglike_frames = loglikes.NumRows(); if (num_loglike_frames != 0) { // if we need to output some loglikes... while (true) { // we may have to grab and release the decodable mutex // a few times before it's ready to accept the loglikes. if (!decodable_synchronizer_.Lock(ThreadSynchronizer::kProducer)) return false; int32 num_frames_decoded = num_frames_decoded_; // we can't have output fewer frames than were decoded. KALDI_ASSERT(num_frames_output >= num_frames_decoded); if (num_frames_output - num_frames_decoded <= config_.max_loglikes_copy) { // If we would have to copy fewer than config_.max_loglikes_copy // previously output log-likelihoods inside the decodable object, then // we go ahead and copy them to that object. int32 frames_to_discard = num_frames_decoded_ - decodable_.FirstAvailableFrame(); KALDI_ASSERT(frames_to_discard >= 0); num_frames_output += num_loglike_frames; decodable_.AcceptLoglikes(&loglikes, frames_to_discard); if (!decodable_synchronizer_.UnlockSuccess(ThreadSynchronizer::kProducer)) return false; break; // break from the innermost while loop. } else { // There are too many frames already available to the decoder, that it // hasn't processed yet, and we don't want them to have to be copied // inside AcceptLoglikes(), so we wait for a bit. // we want the next call to Lock to block until the decoder has // processed more frames. if (!decodable_synchronizer_.UnlockFailure(ThreadSynchronizer::kProducer)) return false; } } } if (last_time) { // Inform the decodable object that there will be no more input. if (!decodable_synchronizer_.Lock(ThreadSynchronizer::kProducer)) return false; decodable_.InputIsFinished(); if (!decodable_synchronizer_.UnlockSuccess(ThreadSynchronizer::kProducer)) return false; KALDI_ASSERT(num_frames_consumed == num_frames_output); return true; } } } bool SingleUtteranceNnet2DecoderThreaded::RunDecoderSearchInternal() { int32 num_frames_decoded = 0; // this is just a copy of decoder_->NumFramesDecoded(); while (true) { // decode at most one frame each loop. if (!decodable_synchronizer_.Lock(ThreadSynchronizer::kConsumer)) return false; // AbortAllThreads() called. if (decodable_.NumFramesReady() <= num_frames_decoded) { // no frames available to decode. KALDI_ASSERT(decodable_.NumFramesReady() == num_frames_decoded); if (decodable_.IsLastFrame(num_frames_decoded - 1)) { decodable_synchronizer_.UnlockSuccess(ThreadSynchronizer::kConsumer); return true; // exit from this thread; we're done. } else { // we were not able to advance the decoding due to no available // input. The next call will ensure that the next call to // decodable_synchronizer_.Lock() will wait. if (!decodable_synchronizer_.UnlockFailure(ThreadSynchronizer::kConsumer)) return false; } } else { // Decode at most config_.decode_batch_size frames (e.g. 1 or 2). decoder_mutex_.lock(); decoder_.AdvanceDecoding(&decodable_, config_.decode_batch_size); num_frames_decoded = decoder_.NumFramesDecoded(); if (silence_weighting_.Active()) { std::lock_guard<std::mutex> lock(silence_weighting_mutex_); // the next function does not trace back all the way; it's very fast. silence_weighting_.ComputeCurrentTraceback(decoder_); } decoder_mutex_.unlock(); num_frames_decoded_ = num_frames_decoded; if (!decodable_synchronizer_.UnlockSuccess(ThreadSynchronizer::kConsumer)) return false; } } } bool SingleUtteranceNnet2DecoderThreaded::EndpointDetected( const OnlineEndpointConfig &config) { std::lock_guard<std::mutex> lock(decoder_mutex_); return kaldi::EndpointDetected(config, tmodel_, feature_pipeline_.FrameShiftInSeconds(), decoder_); } } // namespace kaldi |