Blame view
src/online2bin/online2-wav-nnet2-am-compute.cc
7.82 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
// online2bin/online2-wav-nnet2-am-compute.cc // Copyright 2014 Johns Hopkins University (author: Daniel Povey) // 2014 David Snyder // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "feat/wave-reader.h" #include "online2/online-nnet2-decoding.h" #include "online2/online-nnet2-feature-pipeline.h" #include "online2/onlinebin-util.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Simulates the online neural net computation for each file of input " "features, and outputs as a matrix the result, with optional " "iVector-based speaker adaptation. Note: some configuration values " "and inputs are set via config files whose filenames are passed as " "options. Used mostly for debugging. " "Note: if you want it to apply a log (e.g. for log-likelihoods), use " "--apply-log=true. " " " "Usage: online2-wav-nnet2-am-compute [options] <nnet-in> " "<spk2utt-rspecifier> <wav-rspecifier> <feature-or-loglikes-wspecifier> " "The spk2utt-rspecifier can just be <utterance-id> <utterance-id> if " "you want to compute utterance by utterance. "; BaseFloat chunk_length_secs = 0.05; bool apply_log = false; bool pad_input = true; bool online = true; // feature_config includes configuration for the iVector adaptation, // as well as the basic features. OnlineNnet2FeaturePipelineConfig feature_config; ParseOptions po(usage); po.Register("apply-log", &apply_log, "Apply a log to the result of the computation " "before outputting."); po.Register("pad-input", &pad_input, "If true, duplicate the first and last frames " "of input features as required for temporal context, to prevent #frames " "of output being less than those of input."); po.Register("chunk-length", &chunk_length_secs, "Length of chunk size in seconds, that we process."); po.Register("online", &online, "You can set this to false to disable online iVector estimation " "and have all the data for each utterance used, even at " "utterance start. This is useful where you just want the best " "results and don't care about online operation. Setting this to " "false has the same effect as setting " "--use-most-recent-ivector=true and --greedy-ivector-extractor=true " "in the file given to --ivector-extraction-config, and " "--chunk-length=-1."); feature_config.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); return 1; } std::string nnet2_rxfilename = po.GetArg(1), spk2utt_rspecifier = po.GetArg(2), wav_rspecifier = po.GetArg(3), features_or_loglikes_wspecifier = po.GetArg(4); OnlineNnet2FeaturePipelineInfo feature_info(feature_config); if (!online) { feature_info.ivector_extractor_info.use_most_recent_ivector = true; feature_info.ivector_extractor_info.greedy_ivector_extractor = true; chunk_length_secs = -1.0; } TransitionModel trans_model; AmNnet am_nnet; { bool binary; Input ki(nnet2_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } Nnet &nnet = am_nnet.GetNnet(); int64 num_done = 0, num_frames = 0; SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessTableReader<WaveHolder> wav_reader(wav_rspecifier); BaseFloatCuMatrixWriter writer(features_or_loglikes_wspecifier); for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { std::string spk = spk2utt_reader.Key(); const std::vector<std::string> &uttlist = spk2utt_reader.Value(); OnlineIvectorExtractorAdaptationState adaptation_state( feature_info.ivector_extractor_info); for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!wav_reader.HasKey(utt)) { KALDI_WARN << "Did not find audio for utterance " << utt; continue; } const WaveData &wave_data = wav_reader.Value(utt); // get the data for channel zero (if the signal is not mono, we only // take the first channel). SubVector<BaseFloat> data(wave_data.Data(), 0); OnlineNnet2FeaturePipeline feature_pipeline(feature_info); feature_pipeline.SetAdaptationState(adaptation_state); BaseFloat samp_freq = wave_data.SampFreq(); int32 chunk_length; if (chunk_length_secs > 0) { chunk_length = int32(samp_freq * chunk_length_secs); if (chunk_length == 0) chunk_length = 1; } else { chunk_length = std::numeric_limits<int32>::max(); } int32 samp_offset = 0; while (samp_offset < data.Dim()) { int32 samp_remaining = data.Dim() - samp_offset; int32 num_samp = chunk_length < samp_remaining ? chunk_length : samp_remaining; SubVector<BaseFloat> wave_part(data, samp_offset, num_samp); feature_pipeline.AcceptWaveform(samp_freq, wave_part); samp_offset += num_samp; if (samp_offset == data.Dim()) { // no more input. flush out last frames feature_pipeline.InputFinished(); } } int32 feats_num_frames = feature_pipeline.NumFramesReady(), feats_dim = feature_pipeline.Dim(); Matrix<BaseFloat> feats(feats_num_frames, feats_dim); for (int32 i = 0; i < feats_num_frames; i++) { SubVector<BaseFloat> frame_vector(feats, i); feature_pipeline.GetFrame(i, &frame_vector); } // In an application you might avoid updating the adaptation state if // you felt the utterance had low confidence. See lat/confidence.h feature_pipeline.GetAdaptationState(&adaptation_state); int32 output_frames = feats.NumRows(), output_dim = nnet.OutputDim(); CuMatrix<BaseFloat> output(output_frames, output_dim), feats_cu(feats); if (!pad_input) output_frames -= nnet.LeftContext() + nnet.RightContext(); if (output_frames <= 0) { KALDI_WARN << "Skipping utterance " << utt << " because output " << "would be empty."; continue; } NnetComputation(nnet, feats_cu, pad_input, &output); if (apply_log) { output.ApplyFloor(1.0e-20); output.ApplyLog(); } writer.Write(utt, output); num_frames += feats.NumRows(); num_done++; KALDI_LOG << "Processed data for utterance " << utt; } } KALDI_LOG << "Processed " << num_done << " feature files, " << num_frames << " frames of input were processed."; return (num_done != 0 ? 0 : 1); } catch(const std::exception& e) { std::cerr << e.what() << ' '; return -1; } } // main() |