Blame view
src/online2bin/online2-wav-nnet3-latgen-grammar.cc
11.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
// online2bin/online2-wav-nnet3-latgen-grammar.cc // Copyright 2014-2018 Johns Hopkins University (author: Daniel Povey) // 2016 Api.ai (Author: Ilya Platonov) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "feat/wave-reader.h" #include "online2/online-nnet3-decoding.h" #include "online2/online-nnet2-feature-pipeline.h" #include "online2/onlinebin-util.h" #include "online2/online-timing.h" #include "online2/online-endpoint.h" #include "fstext/fstext-lib.h" #include "lat/lattice-functions.h" #include "util/kaldi-thread.h" #include "nnet3/nnet-utils.h" #include "decoder/grammar-fst.h" namespace kaldi { void GetDiagnosticsAndPrintOutput(const std::string &utt, const fst::SymbolTable *word_syms, const CompactLattice &clat, int64 *tot_num_frames, double *tot_like) { if (clat.NumStates() == 0) { KALDI_WARN << "Empty lattice."; return; } CompactLattice best_path_clat; CompactLatticeShortestPath(clat, &best_path_clat); Lattice best_path_lat; ConvertLattice(best_path_clat, &best_path_lat); double likelihood; LatticeWeight weight; int32 num_frames; std::vector<int32> alignment; std::vector<int32> words; GetLinearSymbolSequence(best_path_lat, &alignment, &words, &weight); num_frames = alignment.size(); likelihood = -(weight.Value1() + weight.Value2()); *tot_num_frames += num_frames; *tot_like += likelihood; KALDI_VLOG(2) << "Likelihood per frame for utterance " << utt << " is " << (likelihood / num_frames) << " over " << num_frames << " frames."; if (word_syms != NULL) { std::cerr << utt << ' '; for (size_t i = 0; i < words.size(); i++) { std::string s = word_syms->Find(words[i]); if (s == "") KALDI_ERR << "Word-id " << words[i] << " not in symbol table."; std::cerr << s << ' '; } std::cerr << std::endl; } } } int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace fst; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Reads in wav file(s) and simulates online decoding with neural nets " "(nnet3 setup), with optional iVector-based speaker adaptation and " "optional endpointing. Note: some configuration values and inputs are " "set via config files whose filenames are passed as options. " "This program like online2-wav-nnet3-latgen-faster but when the FST to " "be decoded is of type GrammarFst. " " " "Usage: online2-wav-nnet3-latgen-grammar [options] <nnet3-in> <fst-in> " "<spk2utt-rspecifier> <wav-rspecifier> <lattice-wspecifier> " "The spk2utt-rspecifier can just be <utterance-id> <utterance-id> if " "you want to decode utterance by utterance. "; ParseOptions po(usage); std::string word_syms_rxfilename; // feature_opts includes configuration for the iVector adaptation, // as well as the basic features. OnlineNnet2FeaturePipelineConfig feature_opts; nnet3::NnetSimpleLoopedComputationOptions decodable_opts; LatticeFasterDecoderConfig decoder_opts; OnlineEndpointConfig endpoint_opts; BaseFloat chunk_length_secs = 0.18; bool do_endpointing = false; bool online = true; po.Register("chunk-length", &chunk_length_secs, "Length of chunk size in seconds, that we process. Set to <= 0 " "to use all input in one chunk."); po.Register("word-symbol-table", &word_syms_rxfilename, "Symbol table for words [for debug output]"); po.Register("do-endpointing", &do_endpointing, "If true, apply endpoint detection"); po.Register("online", &online, "You can set this to false to disable online iVector estimation " "and have all the data for each utterance used, even at " "utterance start. This is useful where you just want the best " "results and don't care about online operation. Setting this to " "false has the same effect as setting " "--use-most-recent-ivector=true and --greedy-ivector-extractor=true " "in the file given to --ivector-extraction-config, and " "--chunk-length=-1."); po.Register("num-threads-startup", &g_num_threads, "Number of threads used when initializing iVector extractor."); feature_opts.Register(&po); decodable_opts.Register(&po); decoder_opts.Register(&po); endpoint_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 5) { po.PrintUsage(); return 1; } std::string nnet3_rxfilename = po.GetArg(1), fst_rxfilename = po.GetArg(2), spk2utt_rspecifier = po.GetArg(3), wav_rspecifier = po.GetArg(4), clat_wspecifier = po.GetArg(5); OnlineNnet2FeaturePipelineInfo feature_info(feature_opts); if (!online) { feature_info.ivector_extractor_info.use_most_recent_ivector = true; feature_info.ivector_extractor_info.greedy_ivector_extractor = true; chunk_length_secs = -1.0; } TransitionModel trans_model; nnet3::AmNnetSimple am_nnet; { bool binary; Input ki(nnet3_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); SetBatchnormTestMode(true, &(am_nnet.GetNnet())); SetDropoutTestMode(true, &(am_nnet.GetNnet())); nnet3::CollapseModel(nnet3::CollapseModelConfig(), &(am_nnet.GetNnet())); } // this object contains precomputed stuff that is used by all decodable // objects. It takes a pointer to am_nnet because if it has iVectors it has // to modify the nnet to accept iVectors at intervals. nnet3::DecodableNnetSimpleLoopedInfo decodable_info(decodable_opts, &am_nnet); fst::GrammarFst fst; ReadKaldiObject(fst_rxfilename, &fst); fst::SymbolTable *word_syms = NULL; if (word_syms_rxfilename != "") if (!(word_syms = fst::SymbolTable::ReadText(word_syms_rxfilename))) KALDI_ERR << "Could not read symbol table from file " << word_syms_rxfilename; int32 num_done = 0, num_err = 0; double tot_like = 0.0; int64 num_frames = 0; SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessTableReader<WaveHolder> wav_reader(wav_rspecifier); CompactLatticeWriter clat_writer(clat_wspecifier); OnlineTimingStats timing_stats; for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { std::string spk = spk2utt_reader.Key(); const std::vector<std::string> &uttlist = spk2utt_reader.Value(); OnlineIvectorExtractorAdaptationState adaptation_state( feature_info.ivector_extractor_info); for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!wav_reader.HasKey(utt)) { KALDI_WARN << "Did not find audio for utterance " << utt; num_err++; continue; } const WaveData &wave_data = wav_reader.Value(utt); // get the data for channel zero (if the signal is not mono, we only // take the first channel). SubVector<BaseFloat> data(wave_data.Data(), 0); OnlineNnet2FeaturePipeline feature_pipeline(feature_info); feature_pipeline.SetAdaptationState(adaptation_state); OnlineSilenceWeighting silence_weighting( trans_model, feature_info.silence_weighting_config, decodable_opts.frame_subsampling_factor); SingleUtteranceNnet3DecoderTpl<fst::GrammarFst> decoder( decoder_opts, trans_model, decodable_info, fst, &feature_pipeline); OnlineTimer decoding_timer(utt); BaseFloat samp_freq = wave_data.SampFreq(); int32 chunk_length; if (chunk_length_secs > 0) { chunk_length = int32(samp_freq * chunk_length_secs); if (chunk_length == 0) chunk_length = 1; } else { chunk_length = std::numeric_limits<int32>::max(); } int32 samp_offset = 0; std::vector<std::pair<int32, BaseFloat> > delta_weights; while (samp_offset < data.Dim()) { int32 samp_remaining = data.Dim() - samp_offset; int32 num_samp = chunk_length < samp_remaining ? chunk_length : samp_remaining; SubVector<BaseFloat> wave_part(data, samp_offset, num_samp); feature_pipeline.AcceptWaveform(samp_freq, wave_part); samp_offset += num_samp; decoding_timer.WaitUntil(samp_offset / samp_freq); if (samp_offset == data.Dim()) { // no more input. flush out last frames feature_pipeline.InputFinished(); } if (silence_weighting.Active() && feature_pipeline.IvectorFeature() != NULL) { silence_weighting.ComputeCurrentTraceback(decoder.Decoder()); silence_weighting.GetDeltaWeights(feature_pipeline.NumFramesReady(), &delta_weights); feature_pipeline.IvectorFeature()->UpdateFrameWeights(delta_weights); } decoder.AdvanceDecoding(); if (do_endpointing && decoder.EndpointDetected(endpoint_opts)) { break; } } decoder.FinalizeDecoding(); CompactLattice clat; bool end_of_utterance = true; decoder.GetLattice(end_of_utterance, &clat); GetDiagnosticsAndPrintOutput(utt, word_syms, clat, &num_frames, &tot_like); decoding_timer.OutputStats(&timing_stats); // In an application you might avoid updating the adaptation state if // you felt the utterance had low confidence. See lat/confidence.h feature_pipeline.GetAdaptationState(&adaptation_state); // we want to output the lattice with un-scaled acoustics. BaseFloat inv_acoustic_scale = 1.0 / decodable_opts.acoustic_scale; ScaleLattice(AcousticLatticeScale(inv_acoustic_scale), &clat); clat_writer.Write(utt, clat); KALDI_LOG << "Decoded utterance " << utt; num_done++; } } timing_stats.Print(online); KALDI_LOG << "Decoded " << num_done << " utterances, " << num_err << " with errors."; KALDI_LOG << "Overall likelihood per frame was " << (tot_like / num_frames) << " per frame over " << num_frames << " frames."; delete word_syms; // will delete if non-NULL. return (num_done != 0 ? 0 : 1); } catch(const std::exception& e) { std::cerr << e.what(); return -1; } } // main() |