Blame view
src/rnnlmbin/rnnlm-train.cc
7.42 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
// rnnlmbin/rnnlm-train.cc // Copyright 2015-2017 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "rnnlm/rnnlm-training.h" #include "rnnlm/rnnlm-example-utils.h" #include "nnet3/nnet-utils.h" #include "cudamatrix/cu-allocator.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::rnnlm; typedef kaldi::int32 int32; typedef kaldi::int64 int64; // rnnlm_rxfilename must be supplied, via --read-rnnlm option. std::string rnnlm_rxfilename; // For now, rnnlm_wxfilename must be supplied (later we could make it possible // to train the embedding matrix without training the RNNLM itself, if there // is a need). std::string rnnlm_wxfilename; // embedding_rxfilename must be supplied, via --read-embedding option. std::string embedding_rxfilename; std::string embedding_wxfilename; std::string word_features_rxfilename; // binary mode for writing output. bool binary = true; RnnlmCoreTrainerOptions core_config; RnnlmEmbeddingTrainerOptions embedding_config; RnnlmObjectiveOptions objective_config; const char *usage = "Train nnet3-based RNNLM language model (reads minibatches prepared " "by rnnlm-get-egs). Supports various modes depending which parameters " "we are training. " "Usage: " " rnnlm-train [options] <egs-rspecifier> " "e.g.: " " rnnlm-get-egs ... ark:- | \\ " " rnnlm-train --read-rnnlm=foo/0.raw --write-rnnlm=foo/1.raw --read-embedding=foo/0.embedding \\ " " --write-embedding=foo/1.embedding --read-sparse-word-features=foo/word_feats.txt ark:- " "See also: rnnlm-get-egs "; std::string use_gpu = "yes"; ParseOptions po(usage); po.Register("use-gpu", &use_gpu, "yes|no|optional|wait, only has effect if compiled with CUDA"); po.Register("read-rnnlm", &rnnlm_rxfilename, "Read RNNLM from this location (e.g. 0.raw). Must be supplied."); po.Register("write-rnnlm", &rnnlm_wxfilename, "Write RNNLM to this location (e.g. 1.raw)." "If not supplied, the core RNNLM is not trained " "(but other parts of the model might be."); po.Register("read-embedding", &embedding_rxfilename, "Location to read dense (feature or word) embedding matrix, " "of dimension (num-words or num-features) by (embedding-dim)."); po.Register("write-embedding", &embedding_wxfilename, "Location to write embedding matrix (c.f. --read-embedding). " "If not provided, the embedding will not be trained."); po.Register("read-sparse-word-features", &word_features_rxfilename, "Location to read sparse word-feature matrix, e.g. " "word_feats.txt. Format is lines like: '1 30 1.0 516 1.0':" "starting with word-index, then a list of pairs " "(feature-index, value) only including nonzero features. " "This will usually be determined in an ad-hoc way based on " "letters and other hand-built features; it's not trainable." " If present, the embedding matrix read via --read-embedding " "will be interpreted as a feature-embedding matrix."); po.Register("binary", &binary, "If true, write outputs in binary form."); objective_config.Register(&po); RegisterCuAllocatorOptions(&po); // register the core RNNLM training options options with the prefix "rnnlm", // so they will appear as --rnnlm.max-change and the like. This is done // with a prefix because later we may add a neural net to transform the word // embedding, and it would have options that would have a name conflict with // some of these options. ParseOptions core_opts("rnnlm", &po); core_config.Register(&core_opts); // ... and register the embedding options with the prefix "embedding". ParseOptions embedding_opts("embedding", &po); embedding_config.Register(&embedding_opts); po.Read(argc, argv); if (po.NumArgs() != 1) { po.PrintUsage(); exit(1); } if (rnnlm_rxfilename == "" || rnnlm_wxfilename == "" || embedding_rxfilename == "") { KALDI_WARN << "--read-rnnlm, --write-rnnlm and --read-embedding " "options are required."; po.PrintUsage(); exit(1); } std::string examples_rspecifier = po.GetArg(1); #if HAVE_CUDA==1 CuDevice::Instantiate().SelectGpuId(use_gpu); CuDevice::Instantiate().AllowMultithreading(); #endif kaldi::nnet3::Nnet rnnlm; ReadKaldiObject(rnnlm_rxfilename, &rnnlm); if (!IsSimpleNnet(rnnlm)) KALDI_ERR << "Input RNNLM in " << rnnlm_rxfilename << " is not the type of neural net we were looking for; " "failed IsSimpleNnet()."; CuMatrix<BaseFloat> embedding_mat; ReadKaldiObject(embedding_rxfilename, &embedding_mat); CuSparseMatrix<BaseFloat> word_feature_mat; if (word_features_rxfilename != "") { // binary mode is not supported here; it's a text format. Input input(word_features_rxfilename); int32 feature_dim = embedding_mat.NumRows(); SparseMatrix<BaseFloat> cpu_word_feature_mat; ReadSparseWordFeatures(input.Stream(), feature_dim, &cpu_word_feature_mat); word_feature_mat.Swap(&cpu_word_feature_mat); // copy to GPU, if we have // one. } { bool train_embedding = (embedding_wxfilename != ""); RnnlmTrainer trainer( train_embedding, core_config, embedding_config, objective_config, (word_features_rxfilename != "" ? &word_feature_mat : NULL), &embedding_mat, &rnnlm); SequentialRnnlmExampleReader example_reader(examples_rspecifier); for (; !example_reader.Done(); example_reader.Next()) trainer.Train(&(example_reader.Value())); if (trainer.NumMinibatchesProcessed() == 0) KALDI_ERR << "There was no data to train on."; // The destructor of 'trainer' trains on the last minibatch // and writes out anything we need to write out. } WriteKaldiObject(rnnlm, rnnlm_wxfilename, binary); KALDI_LOG << "Wrote RNNLM to " << PrintableWxfilename(rnnlm_wxfilename); if (embedding_wxfilename != "") { WriteKaldiObject(embedding_mat, embedding_wxfilename, binary); KALDI_LOG << "Wrote embedding matrix to " << PrintableWxfilename(embedding_wxfilename); } #if HAVE_CUDA==1 CuDevice::Instantiate().PrintProfile(); #endif return 0; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |