Blame view

src/sgmm2/am-sgmm2-test.cc 10.3 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
  // sgmm2/am-sgmm2-test.cc
  
  // Copyright 2012   Arnab Ghoshal
  //           2009-2011  Saarland University
  //           2012  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "gmm/model-test-common.h"
  #include "sgmm2/am-sgmm2.h"
  #include "util/kaldi-io.h"
  
  using kaldi::AmSgmm2;
  using kaldi::int32;
  using kaldi::BaseFloat;
  namespace ut = kaldi::unittest;
  
  // Tests the initialization routines: InitializeFromFullGmm(), CopyFromSgmm2()
  // and CopyGlobalsInitVecs().
  void TestSgmm2Init(const AmSgmm2 &sgmm) {
    using namespace kaldi;
    int32 dim = sgmm.FeatureDim();
    kaldi::Sgmm2GselectConfig config;
    config.full_gmm_nbest = std::min(config.full_gmm_nbest, sgmm.NumGauss());
  
    kaldi::Vector<BaseFloat> feat(dim);
    for (int32 d = 0; d < dim; d++) {
      feat(d) = kaldi::RandGauss();
    }
    kaldi::Sgmm2PerFrameDerivedVars frame_vars;
    frame_vars.Resize(sgmm.NumGauss(), sgmm.FeatureDim(),
                      sgmm.PhoneSpaceDim());
  
    std::vector<int32> gselect;
    sgmm.GaussianSelection(config, feat, &gselect);
    Sgmm2PerSpkDerivedVars empty;
    Sgmm2PerFrameDerivedVars per_frame;
    sgmm.ComputePerFrameVars(feat, gselect, empty, &per_frame);
    Sgmm2LikelihoodCache sgmm_cache(sgmm.NumGroups(), sgmm.NumPdfs());
    BaseFloat loglike = sgmm.LogLikelihood(per_frame, 0, &sgmm_cache, &empty);
    sgmm_cache.NextFrame();
  
    // First, test the CopyFromSgmm2() method:
    AmSgmm2 *sgmm1 = new AmSgmm2();
    sgmm1->CopyFromSgmm2(sgmm, true, true);
    sgmm1->GaussianSelection(config, feat, &gselect);
    sgmm1->ComputePerFrameVars(feat, gselect, empty, &per_frame);
    sgmm_cache.NextFrame();
    BaseFloat loglike1 = sgmm1->LogLikelihood(per_frame, 0, &sgmm_cache, &empty);
    kaldi::AssertEqual(loglike, loglike1, 1e-4);
    delete sgmm1;
  
    AmSgmm2 *sgmm2 = new AmSgmm2();
    sgmm2->CopyFromSgmm2(sgmm, false, false);
    sgmm2->ComputeNormalizers();
    sgmm2->ComputeWeights();
    sgmm2->GaussianSelection(config, feat, &gselect);
    sgmm2->ComputePerFrameVars(feat, gselect, empty, &per_frame);
    sgmm_cache.NextFrame();
    BaseFloat loglike2 = sgmm2->LogLikelihood(per_frame, 0, &sgmm_cache, &empty);
    kaldi::AssertEqual(loglike, loglike2, 1e-4);
    delete sgmm2;
  
    // Next, initialize using the UBM from the current model
    AmSgmm2 *sgmm3 = new AmSgmm2();
    {
      std::vector<int32> pdf2group(sgmm.NumPdfs());
      for (int32 i = 0; i < sgmm.NumPdfs(); i++) pdf2group[i] = sgmm.Pdf2Group(i);
      sgmm3->InitializeFromFullGmm(sgmm.full_ubm(), pdf2group,
                                   sgmm.PhoneSpaceDim(), sgmm.SpkSpaceDim(), true, 0.9);
    }
    sgmm3->ComputeNormalizers();
    sgmm3->GaussianSelection(config, feat, &gselect);
    sgmm3->ComputePerFrameVars(feat, gselect, empty, &per_frame);
    sgmm_cache.NextFrame();
    BaseFloat loglike3 = sgmm3->LogLikelihood(per_frame, 0, &sgmm_cache, &empty);
    kaldi::AssertEqual(loglike, loglike3, 1e-4);
    delete sgmm3;
  }
  
  // Tests the Read() and Write() methods, in both binary and ASCII mode, as well
  // as Check(), and methods in likelihood computations.
  void TestSgmm2IO(const AmSgmm2 &sgmm) {
    using namespace kaldi;
    int32 dim = sgmm.FeatureDim();
    kaldi::Sgmm2GselectConfig config;
    config.full_gmm_nbest = std::min(config.full_gmm_nbest, sgmm.NumGauss());
  
    kaldi::Vector<BaseFloat> feat(dim);
    for (int32 d = 0; d < dim; d++) {
      feat(d) = kaldi::RandGauss();
    }
    kaldi::Sgmm2PerFrameDerivedVars frame_vars;
    frame_vars.Resize(sgmm.NumGauss(), sgmm.FeatureDim(),
                      sgmm.PhoneSpaceDim());
  
    std::vector<int32> gselect;
    sgmm.GaussianSelection(config, feat, &gselect);
    Sgmm2PerSpkDerivedVars empty;
    Sgmm2PerFrameDerivedVars per_frame;
    sgmm.ComputePerFrameVars(feat, gselect, empty, &per_frame);
    Sgmm2LikelihoodCache sgmm_cache(sgmm.NumGroups(), sgmm.NumPdfs());
    BaseFloat loglike = sgmm.LogLikelihood(per_frame, 0, &sgmm_cache, &empty);
  
    // First, non-binary write
    sgmm.Write(kaldi::Output("tmpf", false).Stream(), false,
        kaldi::kSgmmWriteAll);
  
    bool binary_in;
    AmSgmm2 *sgmm1 = new AmSgmm2();
    // Non-binary read
    kaldi::Input ki1("tmpf", &binary_in);
    sgmm1->Read(ki1.Stream(), binary_in);
    sgmm1->Check(true);
    sgmm1->GaussianSelection(config, feat, &gselect);
    sgmm1->ComputePerFrameVars(feat, gselect, empty, &per_frame);
    BaseFloat loglike1 = sgmm1->LogLikelihood(per_frame, 0, &sgmm_cache, &empty);
    kaldi::AssertEqual(loglike, loglike1, 1e-4);
  
    // Next, binary write
    sgmm1->Write(kaldi::Output("tmpfb", true).Stream(), true,
        kaldi::kSgmmWriteAll);
    delete sgmm1;
  
    AmSgmm2 *sgmm2 = new AmSgmm2();
    // Binary read
    kaldi::Input ki2("tmpfb", &binary_in);
    sgmm2->Read(ki2.Stream(), binary_in);
    sgmm2->Check(true);
    sgmm2->GaussianSelection(config, feat, &gselect);
    sgmm2->ComputePerFrameVars(feat, gselect, empty, &per_frame);
    BaseFloat loglike2 = sgmm2->LogLikelihood(per_frame, 0, &sgmm_cache, &empty);
    kaldi::AssertEqual(loglike, loglike2, 1e-4);
    delete sgmm2;
    unlink("tmpf");
    unlink("tmpfb");
  }
  
  void TestSgmm2Substates(const AmSgmm2 &sgmm) {
    using namespace kaldi;
    int32 target_substates = 2 * sgmm.NumPdfs();
    kaldi::Vector<BaseFloat> occs(sgmm.NumPdfs());
    for (int32 i = 0; i < occs.Dim(); i++)
      occs(i) = std::fabs(kaldi::RandGauss()) * (kaldi::RandUniform()+1);
    AmSgmm2 *sgmm1 = new AmSgmm2();
    sgmm1->CopyFromSgmm2(sgmm, false, false);
    Sgmm2SplitSubstatesConfig cfg;
    cfg.split_substates = target_substates;
    sgmm1->SplitSubstates(occs, cfg);
    sgmm1->ComputeNormalizers();
    sgmm1->ComputeWeights();
    sgmm1->Check(true);
    int32 dim = sgmm.FeatureDim();
    kaldi::Sgmm2GselectConfig config;
    config.full_gmm_nbest = std::min(config.full_gmm_nbest, sgmm.NumGauss());
    kaldi::Vector<BaseFloat> feat(dim);
    for (int32 d = 0; d < dim; d++) {
      feat(d) = kaldi::RandGauss();
    }
  
    std::vector<int32> gselect;
    sgmm.GaussianSelection(config, feat, &gselect);
  
    Sgmm2PerSpkDerivedVars empty;
    Sgmm2PerFrameDerivedVars per_frame;
    sgmm.ComputePerFrameVars(feat, gselect, empty, &per_frame);
    Sgmm2LikelihoodCache sgmm_cache(sgmm.NumGroups(), sgmm.NumPdfs());  
    BaseFloat loglike = sgmm.LogLikelihood(per_frame, 0, &sgmm_cache, &empty);
  
    sgmm1->GaussianSelection(config, feat, &gselect);
    sgmm1->ComputePerFrameVars(feat, gselect, empty, &per_frame);
    sgmm_cache.NextFrame();
    BaseFloat loglike1 = sgmm1->LogLikelihood(per_frame, 0, &sgmm_cache, &empty);
    kaldi::AssertEqual(loglike, loglike1, 1e-2);
  
    delete sgmm1;
  }
  
  void TestSgmm2IncreaseDim(const AmSgmm2 &sgmm) {
    using namespace kaldi;
    int32 target_phn_dim = static_cast<int32>(1.5 * sgmm.PhoneSpaceDim());
    int32 target_spk_dim = sgmm.PhoneSpaceDim() - 1;
  
    int32 dim = sgmm.FeatureDim();
    kaldi::Sgmm2GselectConfig config;
    config.full_gmm_nbest = std::min(config.full_gmm_nbest, sgmm.NumGauss());
    kaldi::Vector<BaseFloat> feat(dim);
    for (int32 d = 0; d < dim; d++) {
      feat(d) = kaldi::RandGauss();
    }
    kaldi::Sgmm2PerFrameDerivedVars frame_vars;
  
    std::vector<int32> gselect;
    sgmm.GaussianSelection(config, feat, &gselect);
    Sgmm2PerSpkDerivedVars empty;
    Sgmm2PerFrameDerivedVars per_frame;  
    sgmm.ComputePerFrameVars(feat, gselect, empty, &per_frame);
    Sgmm2LikelihoodCache sgmm_cache(sgmm.NumGroups(), sgmm.NumPdfs());  
    BaseFloat loglike = sgmm.LogLikelihood(per_frame, 0, &sgmm_cache, &empty);
  
    kaldi::Matrix<BaseFloat> norm_xform;
    kaldi::ComputeFeatureNormalizingTransform(sgmm.full_ubm(), &norm_xform);
    AmSgmm2 *sgmm1 = new AmSgmm2();
    sgmm1->CopyFromSgmm2(sgmm, false, false);
    sgmm1->Check(true);
    sgmm1->IncreasePhoneSpaceDim(target_phn_dim, norm_xform);
    sgmm1->ComputeNormalizers();
    sgmm1->Check(true);
  
  
    sgmm1->GaussianSelection(config, feat, &gselect);
    sgmm1->ComputePerFrameVars(feat, gselect, empty, &per_frame);
    sgmm_cache.NextFrame();
    BaseFloat loglike1 = sgmm1->LogLikelihood(per_frame, 0, &sgmm_cache, &empty);
    kaldi::AssertEqual(loglike, loglike1, 1e-4);
  
    sgmm1->IncreaseSpkSpaceDim(target_spk_dim, norm_xform, true);
    sgmm1->Check(true);
    sgmm1->GaussianSelection(config, feat, &gselect);
    sgmm1->ComputePerFrameVars(feat, gselect, empty, &per_frame);
    sgmm_cache.NextFrame();
    BaseFloat loglike2 = sgmm1->LogLikelihood(per_frame, 0, &sgmm_cache, &empty);
    kaldi::AssertEqual(loglike, loglike2, 1e-4);
    delete sgmm1;
  }
  
  void TestSgmm2PreXform(const AmSgmm2 &sgmm) {
    kaldi::Matrix<BaseFloat> xform, inv_xform;
    kaldi::Vector<BaseFloat> diag_scatter;
    kaldi::Vector<BaseFloat> occs(sgmm.NumPdfs());
    occs.Set(100);
    sgmm.ComputeFmllrPreXform(occs, &xform, &inv_xform, &diag_scatter);
    int32 dim = xform.NumRows();
    kaldi::SubMatrix<BaseFloat> a_pre(xform, 0, dim, 0, dim),
        a_inv(inv_xform, 0, dim, 0, dim);
    kaldi::Vector<BaseFloat> b_pre(dim), b_inv(dim);
    b_pre.CopyColFromMat(xform, dim);
    b_inv.CopyColFromMat(inv_xform, dim);
    kaldi::Matrix<BaseFloat> res_mat(dim, dim, kaldi::kSetZero);
    res_mat.AddMatMat(1.0, a_pre, kaldi::kNoTrans, a_inv, kaldi::kNoTrans, 0.0);
    KALDI_ASSERT(res_mat.IsUnit(1.0e-5));
    kaldi::Vector<BaseFloat> res_vec(dim, kaldi::kSetZero);
    res_vec.AddMatVec(1.0, a_inv, kaldi::kNoTrans, b_pre, 0.0);
    res_vec.AddVec(1.0, b_inv);
    KALDI_ASSERT(res_vec.IsZero(1.0e-5));
  }
  
  void UnitTestSgmm2() {
    size_t dim = 1 + kaldi::RandInt(0, 9);  // random dimension of the gmm
    size_t num_comp = 1 + kaldi::RandInt(0, 9);  // random number of mixtures
    kaldi::FullGmm full_gmm;
    ut::InitRandFullGmm(dim, num_comp, &full_gmm);
  
    std::vector<int32> pdf2group;
    pdf2group.push_back(0);
    AmSgmm2 sgmm;
    kaldi::Sgmm2GselectConfig config;
    sgmm.InitializeFromFullGmm(full_gmm, pdf2group, dim+1, 0, true, 0.9);
    sgmm.ComputeNormalizers();
    TestSgmm2Init(sgmm);
    TestSgmm2IO(sgmm);
    TestSgmm2Substates(sgmm);
    TestSgmm2IncreaseDim(sgmm);
    TestSgmm2PreXform(sgmm);
  }
  
  int main() {
    for (int i = 0; i < 10; i++)
      UnitTestSgmm2();
    std::cout << "Test OK.
  ";
    return 0;
  }