Blame view
src/sgmm2/estimate-am-sgmm2-test.cc
6.12 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
// sgmm2/estimate-am-sgmm2-test.cc // Copyright 2009-2011 Saarland University (author: Arnab Ghoshal) // 2012-2013 Johns Hopkins University (author: Daniel Povey) // Arnab Ghoshal // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-math.h" #include "gmm/model-test-common.h" #include "sgmm2/am-sgmm2.h" #include "sgmm2/estimate-am-sgmm2.h" #include "util/kaldi-io.h" using kaldi::AmSgmm2; using kaldi::MleAmSgmm2Accs; using kaldi::int32; using kaldi::BaseFloat; using kaldi::Exp; namespace ut = kaldi::unittest; // Tests the Read() and Write() methods for the accumulators, in both binary // and ASCII mode, as well as Check(). void TestSgmm2AccsIO(const AmSgmm2 &sgmm, const kaldi::Matrix<BaseFloat> &feats) { using namespace kaldi; kaldi::SgmmUpdateFlagsType flags = kaldi::kSgmmAll & ~kSgmmSpeakerWeightProjections; kaldi::Sgmm2PerFrameDerivedVars frame_vars; kaldi::Sgmm2PerSpkDerivedVars empty; frame_vars.Resize(sgmm.NumGauss(), sgmm.FeatureDim(), sgmm.PhoneSpaceDim()); kaldi::Sgmm2GselectConfig sgmm_config; sgmm_config.full_gmm_nbest = std::min(sgmm_config.full_gmm_nbest, sgmm.NumGauss()); MleAmSgmm2Accs accs(sgmm, flags, true); BaseFloat loglike = 0.0; for (int32 i = 0; i < feats.NumRows(); i++) { std::vector<int32> gselect; sgmm.GaussianSelection(sgmm_config, feats.Row(i), &gselect); sgmm.ComputePerFrameVars(feats.Row(i), gselect, empty, &frame_vars); loglike += accs.Accumulate(sgmm, frame_vars, 0, 1.0, &empty); } accs.CommitStatsForSpk(sgmm, empty); kaldi::MleAmSgmm2Options update_opts; AmSgmm2 *sgmm1 = new AmSgmm2(); sgmm1->CopyFromSgmm2(sgmm, false, false); kaldi::MleAmSgmm2Updater updater(update_opts); updater.Update(accs, sgmm1, flags); sgmm1->ComputeDerivedVars(); std::vector<int32> gselect; Sgmm2LikelihoodCache like_cache(sgmm.NumGroups(), sgmm.NumPdfs()); sgmm1->GaussianSelection(sgmm_config, feats.Row(0), &gselect); sgmm1->ComputePerFrameVars(feats.Row(0), gselect, empty, &frame_vars); BaseFloat loglike1 = sgmm1->LogLikelihood(frame_vars, 0, &like_cache, &empty); delete sgmm1; // First, non-binary write accs.Write(kaldi::Output("tmpf", false).Stream(), false); bool binary_in; MleAmSgmm2Accs *accs1 = new MleAmSgmm2Accs(); // Non-binary read kaldi::Input ki1("tmpf", &binary_in); accs1->Read(ki1.Stream(), binary_in, false); accs1->Check(sgmm, true); AmSgmm2 *sgmm2 = new AmSgmm2(); sgmm2->CopyFromSgmm2(sgmm, false, false); updater.Update(*accs1, sgmm2, flags); sgmm2->ComputeDerivedVars(); sgmm2->GaussianSelection(sgmm_config, feats.Row(0), &gselect); sgmm2->ComputePerFrameVars(feats.Row(0), gselect, empty, &frame_vars); Sgmm2LikelihoodCache like_cache2(sgmm2->NumGroups(), sgmm2->NumPdfs()); BaseFloat loglike2 = sgmm2->LogLikelihood(frame_vars, 0, &like_cache2, &empty); kaldi::AssertEqual(loglike1, loglike2, 1e-4); delete accs1; // Next, binary write accs.Write(kaldi::Output("tmpfb", true).Stream(), true); MleAmSgmm2Accs *accs2 = new MleAmSgmm2Accs(); // Binary read kaldi::Input ki2("tmpfb", &binary_in); accs2->Read(ki2.Stream(), binary_in, false); accs2->Check(sgmm, true); AmSgmm2 *sgmm3 = new AmSgmm2(); sgmm3->CopyFromSgmm2(sgmm, false, false); updater.Update(*accs2, sgmm3, flags); sgmm3->ComputeDerivedVars(); sgmm3->GaussianSelection(sgmm_config, feats.Row(0), &gselect); sgmm3->ComputePerFrameVars(feats.Row(0), gselect, empty, &frame_vars); Sgmm2LikelihoodCache like_cache3(sgmm3->NumGroups(), sgmm3->NumPdfs()); BaseFloat loglike3 = sgmm3->LogLikelihood(frame_vars, 0, &like_cache3, &empty); kaldi::AssertEqual(loglike1, loglike3, 1e-6); // Testing the MAP update of M update_opts.tau_map_M = 10; update_opts.full_col_cov = (RandUniform() > 0.5)? true : false; update_opts.full_row_cov = (RandUniform() > 0.5)? true : false; kaldi::MleAmSgmm2Updater updater_map(update_opts); sgmm3->CopyFromSgmm2(sgmm, false, false); updater_map.Update(*accs2, sgmm3, flags); delete accs2; delete sgmm2; delete sgmm3; unlink("tmpf"); unlink("tmpfb"); } void UnitTestEstimateSgmm2() { int32 dim = 1 + kaldi::RandInt(0, 9); // random dimension of the gmm int32 num_comp = 2 + kaldi::RandInt(0, 9); // random mixture size kaldi::FullGmm full_gmm; ut::InitRandFullGmm(dim, num_comp, &full_gmm); AmSgmm2 sgmm; kaldi::Sgmm2GselectConfig config; std::vector<int32> pdf2group; pdf2group.push_back(0); sgmm.InitializeFromFullGmm(full_gmm, pdf2group, dim+1, dim, false, 0.9); // TODO-- make this true! sgmm.ComputeNormalizers(); kaldi::Matrix<BaseFloat> feats; { // First, generate random means and variances int32 num_feat_comp = num_comp + kaldi::RandInt(-num_comp/2, num_comp/2); kaldi::Matrix<BaseFloat> means(num_feat_comp, dim), vars(num_feat_comp, dim); for (int32 m = 0; m < num_feat_comp; m++) { for (int32 d= 0; d < dim; d++) { means(m, d) = kaldi::RandGauss(); vars(m, d) = Exp(kaldi::RandGauss()) + 1e-2; } } // Now generate random features with those means and variances. feats.Resize(num_feat_comp * 200, dim); for (int32 m = 0; m < num_feat_comp; m++) { kaldi::SubMatrix<BaseFloat> tmp(feats, m*200, 200, 0, dim); ut::RandDiagGaussFeatures(200, means.Row(m), vars.Row(m), &tmp); } } sgmm.ComputeDerivedVars(); TestSgmm2AccsIO(sgmm, feats); } int main() { for (int i = 0; i < 10; i++) UnitTestEstimateSgmm2(); std::cout << "Test OK. "; return 0; } |