Blame view

src/sgmm2/estimate-am-sgmm2-test.cc 6.12 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  // sgmm2/estimate-am-sgmm2-test.cc
  
  // Copyright 2009-2011  Saarland University (author:  Arnab Ghoshal)
  //           2012-2013  Johns Hopkins University (author: Daniel Povey)
  //                      Arnab Ghoshal
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "base/kaldi-math.h"
  #include "gmm/model-test-common.h"
  #include "sgmm2/am-sgmm2.h"
  #include "sgmm2/estimate-am-sgmm2.h"
  #include "util/kaldi-io.h"
  
  using kaldi::AmSgmm2;
  using kaldi::MleAmSgmm2Accs;
  using kaldi::int32;
  using kaldi::BaseFloat;
  using kaldi::Exp;
  
  namespace ut = kaldi::unittest;
  
  // Tests the Read() and Write() methods for the accumulators, in both binary
  // and ASCII mode, as well as Check().
  void TestSgmm2AccsIO(const AmSgmm2 &sgmm,
                       const kaldi::Matrix<BaseFloat> &feats) {
    using namespace kaldi;
    kaldi::SgmmUpdateFlagsType flags = kaldi::kSgmmAll & ~kSgmmSpeakerWeightProjections;
    kaldi::Sgmm2PerFrameDerivedVars frame_vars;
    kaldi::Sgmm2PerSpkDerivedVars empty;
    frame_vars.Resize(sgmm.NumGauss(), sgmm.FeatureDim(),
                      sgmm.PhoneSpaceDim());
    kaldi::Sgmm2GselectConfig sgmm_config;
    sgmm_config.full_gmm_nbest = std::min(sgmm_config.full_gmm_nbest,
                                          sgmm.NumGauss());
    MleAmSgmm2Accs accs(sgmm, flags, true);
    BaseFloat loglike = 0.0;
  
    for (int32 i = 0; i < feats.NumRows(); i++) {
      std::vector<int32> gselect;
      sgmm.GaussianSelection(sgmm_config, feats.Row(i), &gselect);
      sgmm.ComputePerFrameVars(feats.Row(i), gselect, empty, &frame_vars);
      loglike += accs.Accumulate(sgmm, frame_vars, 0, 1.0, &empty);
    }
    accs.CommitStatsForSpk(sgmm, empty);
  
    kaldi::MleAmSgmm2Options update_opts;
    AmSgmm2 *sgmm1 = new AmSgmm2();
    sgmm1->CopyFromSgmm2(sgmm, false, false);
    kaldi::MleAmSgmm2Updater updater(update_opts);
    updater.Update(accs, sgmm1, flags);
    sgmm1->ComputeDerivedVars();
    std::vector<int32> gselect;
    Sgmm2LikelihoodCache like_cache(sgmm.NumGroups(), sgmm.NumPdfs());
  
    sgmm1->GaussianSelection(sgmm_config, feats.Row(0), &gselect);
    sgmm1->ComputePerFrameVars(feats.Row(0), gselect, empty, &frame_vars);
    BaseFloat loglike1 = sgmm1->LogLikelihood(frame_vars, 0, &like_cache, &empty);
    delete sgmm1;
  
    // First, non-binary write
    accs.Write(kaldi::Output("tmpf", false).Stream(), false);
    bool binary_in;
    MleAmSgmm2Accs *accs1 = new MleAmSgmm2Accs();
    // Non-binary read
    kaldi::Input ki1("tmpf", &binary_in);
    accs1->Read(ki1.Stream(), binary_in, false);
    accs1->Check(sgmm, true);
    AmSgmm2 *sgmm2 = new AmSgmm2();
    sgmm2->CopyFromSgmm2(sgmm, false, false);
    updater.Update(*accs1, sgmm2, flags);
    sgmm2->ComputeDerivedVars();
    sgmm2->GaussianSelection(sgmm_config, feats.Row(0), &gselect);
    sgmm2->ComputePerFrameVars(feats.Row(0), gselect, empty, &frame_vars);
    Sgmm2LikelihoodCache like_cache2(sgmm2->NumGroups(), sgmm2->NumPdfs());
    BaseFloat loglike2 = sgmm2->LogLikelihood(frame_vars, 0, &like_cache2, &empty);
    kaldi::AssertEqual(loglike1, loglike2, 1e-4);
    delete accs1;
  
    // Next, binary write
    accs.Write(kaldi::Output("tmpfb", true).Stream(), true);
    MleAmSgmm2Accs *accs2 = new MleAmSgmm2Accs();
    // Binary read
    kaldi::Input ki2("tmpfb", &binary_in);
    accs2->Read(ki2.Stream(), binary_in, false);
    accs2->Check(sgmm, true);
    AmSgmm2 *sgmm3 = new AmSgmm2();
    sgmm3->CopyFromSgmm2(sgmm, false, false);
    updater.Update(*accs2, sgmm3, flags);
    sgmm3->ComputeDerivedVars();
    sgmm3->GaussianSelection(sgmm_config, feats.Row(0), &gselect);
    sgmm3->ComputePerFrameVars(feats.Row(0), gselect, empty, &frame_vars);
    Sgmm2LikelihoodCache like_cache3(sgmm3->NumGroups(), sgmm3->NumPdfs());
    BaseFloat loglike3 = sgmm3->LogLikelihood(frame_vars, 0, &like_cache3, &empty);
    kaldi::AssertEqual(loglike1, loglike3, 1e-6);
  
    // Testing the MAP update of M
    update_opts.tau_map_M = 10;
    update_opts.full_col_cov = (RandUniform() > 0.5)? true : false;
    update_opts.full_row_cov = (RandUniform() > 0.5)? true : false;
    kaldi::MleAmSgmm2Updater updater_map(update_opts);
    sgmm3->CopyFromSgmm2(sgmm, false, false);
    updater_map.Update(*accs2, sgmm3, flags);
  
    delete accs2;
    delete sgmm2;
    delete sgmm3;
  
    unlink("tmpf");
    unlink("tmpfb");
  }
  
  void UnitTestEstimateSgmm2() {
    int32 dim = 1 + kaldi::RandInt(0, 9);  // random dimension of the gmm
    int32 num_comp = 2 + kaldi::RandInt(0, 9);  // random mixture size
    kaldi::FullGmm full_gmm;
    ut::InitRandFullGmm(dim, num_comp, &full_gmm);
  
    AmSgmm2 sgmm;
    kaldi::Sgmm2GselectConfig config;
    std::vector<int32> pdf2group;
    pdf2group.push_back(0);
    sgmm.InitializeFromFullGmm(full_gmm, pdf2group, dim+1, dim, false, 0.9); // TODO-- make this true!
    sgmm.ComputeNormalizers();
  
    kaldi::Matrix<BaseFloat> feats;
  
    {  // First, generate random means and variances
      int32 num_feat_comp = num_comp + kaldi::RandInt(-num_comp/2, num_comp/2);
      kaldi::Matrix<BaseFloat> means(num_feat_comp, dim),
          vars(num_feat_comp, dim);
      for (int32 m = 0; m < num_feat_comp; m++) {
        for (int32 d= 0; d < dim; d++) {
          means(m, d) = kaldi::RandGauss();
          vars(m, d) = Exp(kaldi::RandGauss()) + 1e-2;
        }
      }
      // Now generate random features with those means and variances.
      feats.Resize(num_feat_comp * 200, dim);
      for (int32 m = 0; m < num_feat_comp; m++) {
        kaldi::SubMatrix<BaseFloat> tmp(feats, m*200, 200, 0, dim);
        ut::RandDiagGaussFeatures(200, means.Row(m), vars.Row(m), &tmp);
      }
    }
    sgmm.ComputeDerivedVars();
    TestSgmm2AccsIO(sgmm, feats);
  }
  
  int main() {
    for (int i = 0; i < 10; i++)
      UnitTestEstimateSgmm2();
    std::cout << "Test OK.
  ";
    return 0;
  }