Blame view
src/sgmm2/fmllr-sgmm2-test.cc
9.18 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
// sgmm2/fmllr-sgmm2-test.cc // Copyright 2009-2011 Saarland University (author: Arnab Ghoshal) // 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <vector> #include "base/kaldi-math.h" #include "gmm/model-test-common.h" #include "sgmm2/am-sgmm2.h" #include "sgmm2/fmllr-sgmm2.h" #include "util/kaldi-io.h" using kaldi::AmSgmm2; using kaldi::int32; using kaldi::BaseFloat; using kaldi::Vector; using kaldi::Matrix; using kaldi::Exp; namespace ut = kaldi::unittest; void ApplyFmllrXform(const kaldi::VectorBase<BaseFloat> &in, const Matrix<BaseFloat> &xf, Vector<BaseFloat> *out) { int32 dim = in.Dim(); KALDI_ASSERT(xf.NumRows() == dim && xf.NumCols() == dim + 1); Vector<BaseFloat> tmp(dim + 1); tmp.Range(0, dim).CopyFromVec(in); tmp(dim) = 1.0; out->Resize(dim, kaldi::kSetZero); out->AddMatVec(1.0, xf, kaldi::kNoTrans, tmp, 0.0); } // Tests the Read() and Write() methods for the accumulators, in both binary // and ASCII mode, as well as Check(). void TestSgmm2FmllrAccsIO(const AmSgmm2 &sgmm, const kaldi::Matrix<BaseFloat> &feats) { KALDI_LOG << "Test IO start."; using namespace kaldi; int32 dim = sgmm.FeatureDim(); kaldi::Sgmm2PerFrameDerivedVars frame_vars; kaldi::Sgmm2PerSpkDerivedVars empty; kaldi::Sgmm2FmllrGlobalParams fmllr_globals; kaldi::Sgmm2GselectConfig sgmm_config; frame_vars.Resize(sgmm.NumGauss(), dim, sgmm.PhoneSpaceDim()); sgmm_config.full_gmm_nbest = std::min(sgmm_config.full_gmm_nbest, sgmm.NumGauss()); kaldi::Vector<BaseFloat> occs(sgmm.NumPdfs()); occs.Set(feats.NumRows()); sgmm.ComputeFmllrPreXform(occs, &fmllr_globals.pre_xform_, &fmllr_globals.inv_xform_, &fmllr_globals.mean_scatter_); if (fmllr_globals.mean_scatter_.Min() == 0.0) { KALDI_WARN << "Global covariances low rank!"; KALDI_WARN << "Diag-scatter = " << fmllr_globals.mean_scatter_; return; } // std::cout << "Pre-Xform = " << fmllr_globals.pre_xform_; // std::cout << "Inv-Xform = " << fmllr_globals.inv_xform_; FmllrSgmm2Accs accs; accs.Init(sgmm.FeatureDim(), sgmm.NumGauss()); BaseFloat loglike = 0.0; std::vector<int32> gselect; for (int32 i = 0; i < feats.NumRows(); i++) { sgmm.GaussianSelection(sgmm_config, feats.Row(i), &gselect); sgmm.ComputePerFrameVars(feats.Row(i), gselect, empty, &frame_vars); loglike += accs.Accumulate(sgmm, feats.Row(i), frame_vars, 0, 1.0, &empty); } kaldi::Sgmm2FmllrConfig update_opts; update_opts.fmllr_min_count = 999; // Make sure it doesn't // divide 200, because the test can fail when we cross the boundary // of 1000 due to roundoff. Actually it's weird because 1000 should // be exactly representable in float and in text. But something's going wrong. kaldi::Matrix<BaseFloat> xform_mat(dim, dim+1); xform_mat.SetUnit(); BaseFloat frames, impr; accs.Update(sgmm, fmllr_globals, update_opts, &xform_mat, &frames, &impr); Vector<BaseFloat> xformed_feat(dim); ApplyFmllrXform(feats.Row(0), xform_mat, &xformed_feat); sgmm.GaussianSelection(sgmm_config, xformed_feat, &gselect); sgmm.ComputePerFrameVars(xformed_feat, gselect, empty, &frame_vars); Sgmm2LikelihoodCache like_cache(sgmm.NumGroups(), sgmm.NumPdfs()); BaseFloat loglike1 = sgmm.LogLikelihood(frame_vars, 0, &like_cache, &empty); bool binary_in; // First, non-binary write KALDI_LOG << "Test ASCII IO."; accs.Write(kaldi::Output("tmpf", false).Stream(), false); FmllrSgmm2Accs *accs1 = new FmllrSgmm2Accs(); // Non-binary read kaldi::Input ki1("tmpf", &binary_in); accs1->Read(ki1.Stream(), binary_in, false); xform_mat.SetUnit(); accs1->Update(sgmm, fmllr_globals, update_opts, &xform_mat, NULL, NULL); ApplyFmllrXform(feats.Row(0), xform_mat, &xformed_feat); sgmm.GaussianSelection(sgmm_config, xformed_feat, &gselect); sgmm.ComputePerFrameVars(xformed_feat, gselect, empty, &frame_vars); like_cache.NextFrame(); BaseFloat loglike2 = sgmm.LogLikelihood(frame_vars, 0, &like_cache, &empty); std::cout << "LL1 = " << loglike1 << ", LL2 = " << loglike2 << std::endl; kaldi::AssertEqual(loglike1, loglike2, 1e-2); delete accs1; // Next, binary write KALDI_LOG << "Test Binary IO."; accs.Write(kaldi::Output("tmpfb", true).Stream(), true); FmllrSgmm2Accs *accs2 = new FmllrSgmm2Accs(); // Binary read kaldi::Input ki2("tmpfb", &binary_in); accs2->Read(ki2.Stream(), binary_in, false); xform_mat.SetUnit(); accs2->Update(sgmm, fmllr_globals, update_opts, &xform_mat, NULL, NULL); ApplyFmllrXform(feats.Row(0), xform_mat, &xformed_feat); sgmm.GaussianSelection(sgmm_config, xformed_feat, &gselect); sgmm.ComputePerFrameVars(xformed_feat, gselect, empty, &frame_vars); BaseFloat loglike3 = sgmm.LogLikelihood(frame_vars, 0, &like_cache, &empty); std::cout << "LL1 = " << loglike1 << ", LL3 = " << loglike3 << std::endl; kaldi::AssertEqual(loglike1, loglike3, 1e-4); delete accs2; unlink("tmpf"); unlink("tmpfb"); KALDI_LOG << "Test IO end."; } void TestSgmm2FmllrSubspace(const AmSgmm2 &sgmm, const kaldi::Matrix<BaseFloat> &feats) { KALDI_LOG << "Test Subspace start."; using namespace kaldi; int32 dim = sgmm.FeatureDim(); kaldi::Sgmm2PerFrameDerivedVars frame_vars; kaldi::Sgmm2PerSpkDerivedVars empty; kaldi::Sgmm2FmllrGlobalParams fmllr_globals; kaldi::Sgmm2GselectConfig sgmm_config; frame_vars.Resize(sgmm.NumGauss(), dim, sgmm.PhoneSpaceDim()); sgmm_config.full_gmm_nbest = std::min(sgmm_config.full_gmm_nbest, sgmm.NumGauss()); kaldi::Vector<BaseFloat> occs(sgmm.NumPdfs()); occs.Set(feats.NumRows()); sgmm.ComputeFmllrPreXform(occs, &fmllr_globals.pre_xform_, &fmllr_globals.inv_xform_, &fmllr_globals.mean_scatter_); if (fmllr_globals.mean_scatter_.Min() == 0.0) { KALDI_WARN << "Global covariances low rank!"; KALDI_WARN << "Diag-scatter = " << fmllr_globals.mean_scatter_; return; } FmllrSgmm2Accs accs; accs.Init(sgmm.FeatureDim(), sgmm.NumGauss()); BaseFloat loglike = 0.0; std::vector<int32> gselect; for (int32 i = 0; i < feats.NumRows(); i++) { sgmm.GaussianSelection(sgmm_config, feats.Row(i), &gselect); sgmm.ComputePerFrameVars(feats.Row(i), gselect, empty, &frame_vars); loglike += accs.Accumulate(sgmm, feats.Row(i), frame_vars, 0, 1.0, &empty); } SpMatrix<double> grad_scatter(dim * (dim+1)); accs.AccumulateForFmllrSubspace(sgmm, fmllr_globals, &grad_scatter); kaldi::Sgmm2FmllrConfig update_opts; EstimateSgmm2FmllrSubspace(grad_scatter, update_opts.num_fmllr_bases, dim, &fmllr_globals); // update_opts.fmllr_min_count = 100; kaldi::Matrix<BaseFloat> xform_mat(dim, dim+1); xform_mat.SetUnit(); accs.Update(sgmm, fmllr_globals, update_opts, &xform_mat, NULL, NULL); KALDI_LOG << "Test Subspace end."; } void TestSgmm2Fmllr() { // srand(time(NULL)); int32 dim = 1 + kaldi::RandInt(0, 9); // random dimension of the gmm int32 num_comp = 2 + kaldi::RandInt(0, 9); // random number of mixtures kaldi::FullGmm full_gmm; ut::InitRandFullGmm(dim, num_comp, &full_gmm); AmSgmm2 sgmm; kaldi::Sgmm2GselectConfig config; std::vector<int32> pdf2group; pdf2group.push_back(0); sgmm.InitializeFromFullGmm(full_gmm, pdf2group, dim+1, dim, true, 0.9); sgmm.ComputeNormalizers(); kaldi::Matrix<BaseFloat> feats; { // First, generate random means and variances int32 num_feat_comp = num_comp + kaldi::RandInt(-num_comp/2, num_comp/2); kaldi::Matrix<BaseFloat> means(num_feat_comp, dim), vars(num_feat_comp, dim); for (int32 m = 0; m < num_feat_comp; m++) { for (int32 d= 0; d < dim; d++) { means(m, d) = kaldi::RandGauss(); vars(m, d) = Exp(kaldi::RandGauss()) + 1e-2; } } // Now generate random features with those means and variances. feats.Resize(num_feat_comp * 200, dim); for (int32 m = 0; m < num_feat_comp; m++) { kaldi::SubMatrix<BaseFloat> tmp(feats, m*200, 200, 0, dim); ut::RandDiagGaussFeatures(200, means.Row(m), vars.Row(m), &tmp); } } TestSgmm2FmllrAccsIO(sgmm, feats); TestSgmm2FmllrSubspace(sgmm, feats); } int main() { kaldi::g_kaldi_verbose_level = 5; for (int i = 0; i < 10; i++) TestSgmm2Fmllr(); std::cout << "Test OK. "; return 0; } |