Blame view
src/sgmm2bin/sgmm2-acc-stats-gpost.cc
6.35 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
// sgmm2bin/sgmm2-acc-stats-gpost.cc // Copyright 2009-2012 Saarland University Microsoft Corporation // Johns Hopkins University (Author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "sgmm2/am-sgmm2.h" #include "hmm/transition-model.h" #include "sgmm2/estimate-am-sgmm2.h" int main(int argc, char *argv[]) { using namespace kaldi; try { const char *usage = "Accumulate stats for SGMM training, given Gaussian-level posteriors " "Usage: sgmm2-acc-stats-gpost [options] <model-in> <feature-rspecifier> " "<gpost-rspecifier> <stats-out> " "e.g.: sgmm2-acc-stats-gpost 1.mdl 1.ali scp:train.scp ark, s, cs:- 1.acc "; ParseOptions po(usage); bool binary = true; std::string spkvecs_rspecifier, utt2spk_rspecifier; std::string update_flags_str = "vMNwcSt"; BaseFloat rand_prune = 1.0e-05; po.Register("binary", &binary, "Write output in binary mode"); po.Register("spk-vecs", &spkvecs_rspecifier, "Speaker vectors (rspecifier)"); po.Register("utt2spk", &utt2spk_rspecifier, "rspecifier for utterance to speaker map"); po.Register("rand-prune", &rand_prune, "Pruning threshold for posteriors"); po.Register("update-flags", &update_flags_str, "Which SGMM parameters to update: subset of vMNwcS."); po.Read(argc, argv); kaldi::SgmmUpdateFlagsType acc_flags = StringToSgmmUpdateFlags(update_flags_str); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), gpost_rspecifier = po.GetArg(3), accs_wxfilename = po.GetArg(4); using namespace kaldi; typedef kaldi::int32 int32; // Initialize the readers before the model, as this can avoid // crashes on systems with low virtual memory. SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessSgmm2GauPostReader gpost_reader(gpost_rspecifier); RandomAccessBaseFloatVectorReaderMapped spkvecs_reader(spkvecs_rspecifier, utt2spk_rspecifier); RandomAccessTokenReader utt2spk_map(utt2spk_rspecifier); AmSgmm2 am_sgmm; TransitionModel trans_model; { bool binary; Input ki(model_filename, &binary); trans_model.Read(ki.Stream(), binary); am_sgmm.Read(ki.Stream(), binary); } Vector<double> transition_accs; trans_model.InitStats(&transition_accs); MleAmSgmm2Accs sgmm_accs(rand_prune); sgmm_accs.ResizeAccumulators(am_sgmm, acc_flags, (spkvecs_rspecifier != "")); double tot_t = 0.0; kaldi::Sgmm2PerFrameDerivedVars per_frame_vars; int32 num_done = 0, num_err = 0; std::string cur_spk; Sgmm2PerSpkDerivedVars spk_vars; for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); std::string spk = utt; if (!utt2spk_rspecifier.empty()) { if (!utt2spk_map.HasKey(utt)) { KALDI_WARN << "utt2spk map does not have value for " << utt << ", ignoring this utterance."; continue; } else { spk = utt2spk_map.Value(utt); } } if (spk != cur_spk && cur_spk != "") sgmm_accs.CommitStatsForSpk(am_sgmm, spk_vars); if (spk != cur_spk || spk_vars.Empty()) { spk_vars.Clear(); if (spkvecs_reader.IsOpen()) { if (spkvecs_reader.HasKey(utt)) { spk_vars.SetSpeakerVector(spkvecs_reader.Value(utt)); am_sgmm.ComputePerSpkDerivedVars(&spk_vars); } else { KALDI_WARN << "Cannot find speaker vector for " << utt; num_err++; continue; } } // else spk_vars is "empty" } cur_spk = spk; const Matrix<BaseFloat> &mat = feature_reader.Value(); if (!gpost_reader.HasKey(utt) || gpost_reader.Value(utt).size() != mat.NumRows()) { KALDI_WARN << "No Gaussian-posterior information for utterance " << utt << " (or wrong size)."; num_err++; continue; } const Sgmm2GauPost &gpost = gpost_reader.Value(utt); num_done++; BaseFloat tot_weight = 0.0; for (size_t i = 0; i < gpost.size(); i++) { const std::vector<int32> &gselect = gpost[i].gselect; am_sgmm.ComputePerFrameVars(mat.Row(i), gselect, spk_vars, &per_frame_vars); for (size_t j = 0; j < gpost[i].tids.size(); j++) { int32 tid = gpost[i].tids[j], // transition identifier. pdf_id = trans_model.TransitionIdToPdf(tid); BaseFloat weight = gpost[i].posteriors[j].Sum(); trans_model.Accumulate(weight, tid, &transition_accs); sgmm_accs.AccumulateFromPosteriors(am_sgmm, per_frame_vars, gpost[i].posteriors[j], pdf_id, &spk_vars); tot_weight += weight; } } tot_t += tot_weight; if (num_done % 50 == 0) KALDI_LOG << "Processed " << num_done << " utterances"; } sgmm_accs.CommitStatsForSpk(am_sgmm, spk_vars); // for last speaker KALDI_LOG << "Overall number of frames is " << tot_t; KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors."; { Output ko(accs_wxfilename, binary); transition_accs.Write(ko.Stream(), binary); sgmm_accs.Write(ko.Stream(), binary); } KALDI_LOG << "Written accs."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |